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Abstract

In this Masters Dissertation we study the structure and dynamics of complex

networks. We start with a revision of the literature of complex networks, presenting

the most common network metrics and models of network connectivity. We then

study in detail the dynamics of the Random Threshold Network (RTN) model. We

develop a new mean-field approximation for the RTN dynamics that is considerably

more simple than previous results. This new approximation is useful from a prac-

tical standpoint, since it allows the generation of RTNs where the average activity

of the network is controlled. We then review the literature of Adaptive Networks,

explaining some of the adaptive models with interesting characteristics. At last, we

develop two models of adaptive networks inspired by the evolution of neuronal struc-

ture in the brain. The first model uses simple rules and a link-removing evolution

to control the activity on the network. The inspiration is the removal of neurons

and neuronal connections after infancy. This model can also control the activity of

individual groups within the same network. We explore a variant of this model in a

bi-dimensional space, where we are able to generate modular and small-world net-

works. The second model uses external inputs to control the topological evolution of

the network. The inspiration in this case is the development of neuronal connections

during the infancy, which is influenced by interactions with the environment. The

model generates finite avalanches of activity, and is capable of generating specific

and modular topologies using simple rules.

Keywords: Complex networks, Self-organized criticality, Neural networks.
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Resumo

Nesta dissertação de mestrado estudamos a dinâmica e estrutura de redes complexas.

Começamos com um revisão da literatura de redes complexas, apresentando as métri-

cas de rede e modelos de conectividade mais comuns. Estudamos então em detalhe a

dinâmica do modelo das Random Threshold Networks (RTN). Desenvolvemos uma

nova aproximação de campo médio para a dinâmica de RTNs, consideravelmente

mais simples que aproximações anteriores. Esta nova aproximação é útil de um

ponto de vista prático, pois permite a geração de RTNs onde a atividade média da

rede é controlável. Fazemos então uma revisão da literatura de redes adaptativas,

apresentando alguns modelos de redes adaptativas com caracteŕısticas interessantes.

Por fim, desenvolvemos dois modelos de redes adaptativas inspirados pela evolução

da estrutura neuronal no cérebro.O primeiro modelo utiliza regras simples e uma

evolução baseada na remoção de links para controlar a atividade sobre a rede. A in-

spiração é a remoção de neurônios e conexões neuronais após a infância. Este modelo

também consegue controlar a atividade de grupos individuais dentro de uma mesma

rede. Exploramos uma variante deste modelo em um espaço bi-dimensional, onde

conseguimos gerar redes modulares e small-world. O segundo modelo utiliza inputs

externos para controlar a evolução da topologia da rede. A inspiração neste caso é o

desenvolvimento das conexões neuronais durante a infância, que é influenciado por

interações com o ambiente. O modelo gera avalanches finitas de atividade, e é capaz

de gerar topologias espećıficas e modulares utilizando regras simples.

Palavras-Chave: Redes complexas, Criticalidade auto-organizada, Redes neu-

rais.
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1
Introduction

We live in a time of vast amounts of data. Genome databases have the mapped

DNA of over 10000 species[1], while Twitter had an average of 340 million messages

sent per day in 2012[2]. Many of these data sets are formed by discrete agents that

interact between them, such as people in a social network. Network Science (also

known as Complex Networks) emerged as a way to study and seek hidden patterns in

these systems[3, 4, 5]. It borrows concepts from many fields of knowledge, including

Physics, Mathematics and Computer Science. As such, it is an interdisciplinary field

with applications in a wide variety of areas, ranging from Genetics to Sociology.

Besides studying the structure of a network, Network Science also studies the

dynamics on a network. In most cases, agents in the network have some behavior

besides interacting to one another. For instance, people can be healthy or sick in

an epidemiological network, and spins can be up or down in a spin network. The

topic of dynamical processes on networks aims the study of dynamical models and

how the underlying network structure affects these models. This has parallels in the

real-world. To cite an example, the spreading of an airborne disease on a city like

Hong Kong is different from the spreading in a sparse, rural community. In other

words, how the agents interact (i.e., the structure of the network) tends to have a

strong effect on the dynamics of the system. In some cases, there is also a change in

the structure of the network that is influenced by the dynamics. This is the object

of study of a subfield of Network Science, called Adaptive Networks.

Neuroscience is an interdisciplinary field of study concerned with understanding

the nervous system[6]. It has improved our knowledge of the human brain dra-

matically, specially in the last few decades. The basic functional unit of the brain

is the neuron, which can be active (firing) or inactive. The neuron interacts with

other neurons using connections called synapses. One important discovery from

1



2 1. Introduction

Neuroscience is how the brain develops. After birth, the newborn child’s brain goes

through a synaptic growth phase. During this phase, the number of synapses in-

creases dramatically. After it the number of synapses diminishes, in a process called

synaptic pruning[7, 8, 9].

The focus of this Dissertation is twofold: to review some of the current under-

standing of networks, focusing on both dynamics and structure, and present our

contributions to the field of Complex Networks. These contributions are in the form

of a study of the dynamical model called Random Threshold Network, and two

adaptive network models. Our two models are inspired by the development of the

brain. With them, we attempt to control certain aspects of network dynamics and

structure while using simple rules and a minimal number of parameters. Our first

model is inspired by the synaptic pruning in the brain, while the second model is

influenced by the synaptic growth.

The organization of this Dissertation is the following. In Chapter 2 we review the

basics of Network Theory, presenting the most common metrics used to characterize

the structure of a network. We pay special attention to the problem of community

detection in a network. We also review the most common models of network struc-

ture. In Chapter 3 we explore the Random Threshold Network dynamical model.

We focus on the balance between excitatory and inhibitory links, and develop a

mean-field approximation for the dynamics. In Chapter 4 we present an introduc-

tion to the field of Adaptive Networks, and explain some of the common properties

found in adaptive models. We do this by briefly reviewing models that exemplify

these properties. In Chapter 5 we present the first of our adaptive models. In this

model, we are able to control the activity of a network using simple rules. We also

present a simple rule capable of controlling certain structural properties in spatial

networks. In Chapter 6 we present our second model, where external inputs are used

to control the growth of a network. Finally in Chapter 7 we have the conclusion of

this Dissertation.



2
Basics of Network Theory

2.1 Basic definitions

A network, also called a graph in mathematical literature, is a representation of a

set of n objects, called nodes, that interact pairwise[10]. The interaction between

two of these nodes is called a link, and we denote the link between nodes i and

j by aij. We denote by m the number of links in the network. If the interaction

between the nodes is symmetric then aij = aji and we call the network undirected.

If the interaction is directed - such as in a network of computers where information

is sent from one computer to another - then the network is directed and we can

have aij 6= aji. In this case, we denote by aij the interaction from node j to node

i. This notation is used in order to simplify calculations. It is worth noting that

some authors use a reversed notation, with aij denoting the link from i to j. The

networks in Fig. 2.1 are such examples. The structure (or topology) of the network

can be encoded in the adjacency matrix A, whose elements are the links aij.

Figure 2.1: Examples of (a) an undirected unweighted network and its adjacency
matrix A, and (b) a directed weighted network and its weight matrix W. Repro-
duced from [11].

A second classification category is regarding the value of aij. We call the network

3
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unweighted when aij = 1 if the link exists and aij = 0 if it does not. If the link

posseses a different value than zero and one, then we call it a weighted network

and denote the link between i and j by wij. The matrix W whose elements are the

weights wij is called the weight matrix. One example of a weighted network is a power

grid network, where nodes represent power stations and links represent transmission

lines. The transmission lines generally have different capacities, so different weights

can be assigned to links to represent different transmission capacities.

2.2 Measures of network topology

Small networks can be analyzed visually, for instance by representing the nodes with

points and the links with lines joining the connected nodes. Large networks, however,

require the use of network metrics in order to be characterized. This contrast can

be seen in Fig. 2.2. In this section we describe some of the metrics and techniques

used to study the topology of a network.

Figure 2.2: The Zachary karate club network is an example of a small network.
The color and node shapes represent a division of the network in two communities.
Reproduced from [5] (left). An human protein interaction network is an example of
a large network. Reproduced from [12] (right).

One of the most basic metrics is the degree. The degree ki of a node i is defined

as the number of connections (aij 6= 0) the node posseses, calculated as ki =
∑

j aij

for an undirected network. For a weighted network, we define the node strength as

Si =
∑

j wij. For a directed network, we define the in-degree as the number of links

a node receives (given by kini =
∑

j aij) , and the out-degree is the number of links

it sends away (given by kouti =
∑

j aji). The average degree K in a network with n

nodes is given by

K =
1

n

∑
i,j

aij (2.1)
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and is the average number of connections per node in the network. Since every link

needs to end somewhere, there is only one average degree in directed networks, as

opposed to an “average in-degree” and “average out-degree”. The total number of

links in the network is given by m = nK/2 for undirected networks and mdir = nK

for directed ones. Besides the average degree, another important metric is the degree

distribution. The degree distribution pk is the probability distribution of a random

node having its degree equal to k. In particular, a network with a degree distribution

of the form pk ∼ k−γ (called a power-law) is labeled a scale-free network .

The degree is a local measure, in the sense that it gives information about the

properties of individual nodes. We may also be interested in how these nodes are

organized. A question one may ask is if the neighbors of a node are also neighbors

of each other. This question is encoded in the clustering coefficient. The local

clustering coefficient ci is defined as

ci =
(number of triangles connected to node i)

(number of triples centered on node i)
(2.2)

where a triple is any selection of three nodes and a triangle is a triple that forms a

loop. The clustering coefficient C is defined as the average of ci

C = 〈c〉 =
1

n

n∑
i=1

ci (2.3)

In other words, the clustering coefficient measures how tightly grouped nodes are in

the network. In terms of the adjacency matrix, C can be calculated as

C =
1

n

n∑
i=1

[
1

ki (ki − 1)

∑
j,m

aijajmami

]
(2.4)

While simple, the clustering coefficient is a widely used measure, and many real-

world networks have been shown to possess a high clustering[3].

Another reasonable question is how far apart two nodes i and j are. This is mea-

sured by the shortest path length Lij, defined as the minimum number of nodes (or

distance) one needs to go through in order to reach node j starting from node i. For

large networks, we are interested in the characteristic path length L = 〈Lij〉, taken

as the average distance1 between any two nodes. A low L means that, starting from

1By “distance” we always mean the number of nodes one needs to pass through in order to go
from one node to another. For the physical distance between nodes embedded into a 2D or 3D
space we will use the term “Euclidean distance”.
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a random node, most of the network is easily reachable. Thus, the characteristic

path length is a measure of network integration[13]. There must be a relationship

between L and the network size n, with L increasing as n increases. If the charac-

teristic path length scales as L ∼ ln (n) or slower, we call the network a small-world

network. In small-world networks the distance between two nodes is small, even if

the network is very large. The small-world property has been observed in a wide

variety of real-world networks, from power grid networks[14] to brain networks[15].

2.3 Community detection and partitioning

In most networks nodes are organized in groups, also known as communities. While

the clustering coefficient gives an idea of how tightly connected the nodes are, it

does not describe the size and composition of the groups in the network. The

problem of community detection and partitioning remains one of the most active

topics in network science, and many methods have been proposed to address it[16,

17, 18, 19]. Communities can be overlapping, when a node can be member of two

or more communities at the same time, or non-overlapping[20, 21]. The number of

communities in the network can be known or unknown. Some methods may also

yield better results than others, but may not be computationally feasible for large

networks. Therefore, the choice of algorithm to be used depends on which aspect of

community division one wants to describe.

We can subdivide the problem of community division in two, depending on

whether we know the number of communities a priori. It is called graph partitioning

if the number of communities is known, and it is a classic problem in computer

science. The idea is to divide the nodes in non-overlapping groups and minimize the

number of links between groups. One example of application is parallelizing a com-

putation. In a computer with many processing units (or cores), a task can be divided

into sub-tasks and distributed among the cores. We can represent this with a graph,

where nodes are the sub-tasks and links are the interactions between the sub-tasks.

Communication between the cores is usually slow, which defeats the purpose of par-

allelization. Therefore we want to minimize the number of inter-community links in

our graph representation, which can be accomplished with a variety of partitioning

algorithms[10].
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Figure 2.3: Example of a network division in three communities. The division mini-
mizes the number of inter-community links. Reproduced from [16] (left). Example of
a dendogram, showing the hierarchical community division of a network. The circles
represent nodes, and the tree represents the community membership of the nodes at
different levels, from bottom (single nodes) to top (one community). Reproduced
from [22] (right).

If we do not have prior information on the expected number of communities, we

call it community detection. At the center of every community detection algorithm

is an implicit definition of what constitutes a community. These community defi-

nitions are not equivalent, making community detection a less well-defined problem

than graph partitioning. Let us first define the possible outputs of these algorithms.

A community detection algorithm can give two types of output: the community

membership(s) of each node, and/or a dendogram expressing the hierarchical com-

munity division of the network (see Fig. 2.3). Community detection is generally

considered a NP-hard problem[23], meaning that it cannot be solved exactly except

for very small networks. Therefore, most algorithms of community detection are

approximation, or heuristic, algorithms.

The first class of algorithms we will describe is the one based on betweenness

centrality (BC)[24]. The concept of BC refers to how central a network element is

regarding a certain property. For instance, the shortest-path betweenness bi of a

node i is defined as

bi =
1

(n− 1) (n− 2)

∑
{j,h}6=i

ρhj(i)

ρhj
(2.5)

where ρhj is the number of shortest paths between nodes h and j, and ρhj(i) is the

number of such paths that pass through node i. In other words, the shortest-path

betweenness measures how central a node is regarding paths in the network. While

shortest-path betweenness is the most used metric in BC algorithms, some variants



8 CHAPTER 2. BASICS OF NETWORK THEORY

use metrics such as random-walk betweenness[25] and current-flow betweenness[26].

The BC algorithm is the following: we calculate the betweenness metric for each link

in the network, and remove the link with the largest betweenness. The process is

iterated until all links are removed. This eventually start breaking the network into

isolated components, generating a dendogram of communities. The implicit idea

is that inter-community links are important in carrying information in the network

and possess large betweenness. By removing them we are then easily able to identify

the communities. Betweenness centrality algorithms tend to yield good results but

are slow, with a time complexity of O (mn(m+ n))2.

Another class of algorithms is the one based on hierarchical clustering. These

algorithms use a definition of similarity between nodes, such as cosine similarity[23].

The algorithm start with every node in its own group. The two most similar groups

are joined together, and this is iterated until there is only one group. Therefore, hi-

erarchical clustering methods also yield a dendogram of community structure. Con-

sidering a pair of nodes from two different groups, there are three ways to define the

similarity between groups: the similarity of the most similar pair (“single linkage”),

the least similar pair (“complete linkage”), and the average of all pairs (“average

linkage”). The time complexity of the hierarchical clustering depends heavily on

the cost to compute the similarity. For networks embedded into space, where the

Euclidean distance can be used, the algorithm goes as O (n2) ∼ O (n2logn). If the

network is not embedded, however, the time complexity can go much higher[23].

The last class of algorithms we will describe is the one based on modularity.

Modularity[16] can be viewed as a fitness function of a particular community parti-

tion, and is one of the most used metrics of community detection. Its basic idea is

that, in a network with communities, most links should join members of the same

group. Modularity differs from graph partitioning since it does not simply minimize

the number of inter-community links. Instead, it compares the number of links in-

side the communities with what would be expected by chance. The modularity Q

is defined as

Q = (fraction of links within communities)− (expected fraction of such links)

(2.6)

In other words, for every pair of nodes {i, j} in the same community, Q calculates

the fraction of links
∑

i,j aij/2m in the community and subtracts from it what would

2The time complexity measures how the computational time of an algorithm scales with the
size of its inputs. In this case, a network with the same average degree as another but with twice
the nodes will demand around nine times the calculation time.
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be expected for a “null model” network. For an undirected randomized network3,

the probability of a link between two nodes i and j is given by kikj/2m. Therefore,

the modularity Q can be written as

Q =
1

2m

∑
i,j

(
aij −

kikj
2m

)
δ(ci, cj) (2.7)

where δ(ci, cj) = 1 if the communities ci of i and cj of j are the same, and δ(ci, cj) = 0

otherwise. It can be shown that Q ∈
[
−1

2
, 1
]
, and we expect Q ≈ 0 for a community

division on a network without community structure. One possible extension for

directed networks is given by[17]

Qdir =
1

m

∑
i,j

(
aij −

kini k
out
j

m

)
δ(ci, cj) (2.8)

where the normalization in Eq. 2.7 and 2.8 follows from the fact that
∑

i,j aij = 2m

in undirected networks but
∑

i,j aij = m in directed ones. Finally, a straightforward

extension of modularity for weighted networks is given by[27]

Qweight =
1

2ω

∑
i,j

(
wij −

wiwj
2ω

)
δ(ci, cj) (2.9)

where wi =
∑

j wij is the strength of node i and ω =
∑

i,j wij/2 is the total network

strength.

In order to use modularity to study network structure, one must find the com-

munity division that maximizes modularity. This can be accomplished through

a large number of heuristic algorithms. Examples include algorithms based on

simulated annealing[28], extremal optimization[29], genetic algorithms[30], greedy

algorithms[31] and an adaptation of the Kernighan-Lin algorithm[16]. Here we will

describe two algorithms, one that is based on linear algebra and easily deployed, and

a fast algorithm used in large networks.

The linear algebra algorithm is called the spectral modularity maximization

(SMM) algorithm, and it can be used to divide a network into two modules. Let us

first define the modularity matrix B, whose elements Bij are

Bij = aij −
kikj
2m

(2.10)

3More specifically,we use the configuration model[17]. In this model, every link is divided in
two stubs, and the pair of every stub is then randomized. Thus, the configuration model generates
a randomized version of a network while preserving the degree distribution.
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From Eqs. 2.7 and 2.10, we can write

Q =
1

2m

∑
i,j

Bijδ(ci, cj) (2.11)

Now let us define the group vector s with

si =

+1 , if node ibelongs to module 1

−1 , if node ib elongs to module 2
(2.12)

We can write the Kronecker delta δ(ci, cj) as δ(ci, cj) = 1
2

(sisj + 1) and rewrite Eq.

2.11 as

Q =
1

4m

∑
i,j

Bij (sisj + 1) =
1

4m

∑
i,j

Bijsisj (2.13)

where we use the fact that
∑

iBij =
∑

j Bij = 0. In matrix form, Eq. 2.13 is given

by

Q =
1

4m
sTBs (2.14)

and therefore we must find the vector s that maximizes Q. For that, we use a

relaxation method. Instead of si = ±1, we allow si to take any real value, with

the restriction that sT s =
∑

i s
2
i = n. Geometrically, we are allowing s to point

anywhere in space, instead of just the corners of a n-dimensional hypercube. Using

a Lagrange multiplier β′, we can write

∂

∂si

[∑
j,k

Bjksjsk + β′

(
n−

∑
j

s2j

)]
= 0 (2.15)

and obtain ∑
j

Bijsj = 2β′si (2.16)

Bs = βs (2.17)

where we define β = 2β′ for simplicity. From Eq. 2.17 we see that s is an eigenvector

of B. Since B is Hermitian, the corresponding eigenvalue β is real. Applying Eq.

2.17 to Eq. 2.14 we have

Q =
1

4m
sTβs =

n

4m
β (2.18)

and therefore we reduce the problem of maximizing Q to finding the largest eigen-

value β1 of B. Note that Eq. 2.18 does not give the modularity of the network, as
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si = ±1 in the real network. However we can approximate the answer by choosing a

vector s as close to the corresponding eigenvector u1 of β1 as possible. This is done

by maximizing the product sTu1, which can be done by choosing si as

si =

+1 , if [u1]i > 0

−1 , if [u1]i < 0
(2.19)

where [u1]i is the ith element of u1. This solves the problem, as it gives us the

community membership of each node after the bisection. The value of Q can then

be calculated from Eq. 2.14. The algorithm can be adapted to find more than two

communities by a process of repeated bi-sectioning. At each step, we can check if the

division of a community increases or decreases the modularity Q of the entire net-

work. The division is performed whenever it increases Q, and we stop the algorithm

when no further division is possible. The main drawback of this method is that

sometimes the repeated bi-sectioning fails to find the best community division[10].

The second algorithm of modularity maximization we will describe is the Lou-

vain algorithm[32]. The Louvain algorithm is a very fast modularity maximization

algorithm, with a linear time complexity in sparse data. This allows the algorithm

to be used to analyze very large networks, such as a Twitter network with 2.4M

nodes[33]. Despite being fast, the algorithm is reliable[34], making it one of the

most widespread algorithms to detect communities on a network. The algorithm is

divided in two phases, iterated repeatedly. First, we start with every node a member

of its own community. Then, for a chosen node i, we calculate the modularity gain

of moving i from its community to the community of every neighbor of i. The node

i is then moved to the community that maximizes the modularity gain. If the gain

is negative, i stays at its original community. This is repeated for all nodes and

several times, until no modularity gain can be found and the modularity reaches

a local maxima. The second phase consists in changing the scale by generating a

new network, where the nodes are the communities found in the previous step. This

new network will be weighted and possess self-links (aii 6= 0), even if the original

network does not. This two-step process constitutes a “pass”, and the algorithm is

run a (generally small) number of passes until no more changes are possible and a

maximum of modularity is obtained. In Fig. 2.4 we have a visual representation of

the Louvain algorithm.
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Figure 2.4: Visualization of the Louvain algorithm. At each pass the network is
re-sized, with the new nodes being the communities of the previous network. Inside
each pass the modularity is optimized. Reproduced from [32].

The efficiency of the algorithm is due primarily to two factors. First, after each

pass the network is shrunk, cutting down the time to find the modularity maxima.

More importantly, the modularity gain by changing the community of a link is a

fast calculation. The gain ∆QC
weight by moving an isolated node i to a community

C can be computed as

∆QC
weight =

[
2wCi + ΣC

2ω
−
(
wi + Σtot

2ω

)2
]
−

[
ΣC

2ω
−
(

Σtot

2ω

)2

−
(wi

2ω

)2]
(2.20)

where wCi is the strength of i pointing to nodes inside C, ΣC is the total strength

of links inside C, Σtot is the total strength of external links pointing to C, and wi

and ω were defined previously. A similar expression gives the change in modularity

∆Q−weight of removing i from its original community. Therefore one only needs to

calculate ∆QC
weight −∆Q−weight for every community neighbor of i and chose the one

that maximizes the gain. For the sake of comparison, in Table 2.1 we summarize

the time complexity of the algorithms explained in this section, and of the other

algorithms we mentioned.
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Algorithm Time complexity

Betweenness centrality O (mn(m+ n))
Hierarchical clustering (embedded) O (n2) ∼ O (n2logn)

Simulated annealing O (n3)
Extremal optimization O (n2logn)

Genetic algorithm O (mn2)
Greedy algorithm O (n2) ∼O (n2logn)

Kernighan-Lin O (mn) by step
Spectral modularity O (n2) ∼ O (n3)

Louvain algorithm (sparse) O (n)

Table 2.1: Time complexity of various community detection algorithms.

2.4 Network models

Models of network connectivity are useful in studying the properties of real-world

networks. For instance, the Barabási-Albert network proposes a “rich gets richer”

algorithm of link generation whose degree distribution is seen in many real-world

networks[35]. They are also useful in generating underlying network topologies to

study dynamical models. Different topologies impact dynamics in different ways.

For example, scale-free networks lack an epidemic threshold in epidemic spreading

models, meaning they are very susceptible to disease spreading[36].

The first model we will explore is the Erdos-Rényi (ER) network. One of the

most ubiquitous network models, it is usually the model referred to when the term

“random network” is used. It is named after mathematicians Paul Erdos and Alfréd

Rényi, who first studied its properties in 1959[37]. It is made of two closely variants:

the G(n, p) graph and the G(n,m) graph. In the G(n, p) graph an unweighted,

undirected network with n nodes is constructed. Each of the possible
(
n
2

)
links

exist with probability p and independently of each other. In the G(n,m) variant,

a graph is chosen at random from the set of all graphs with n nodes and m links.

As n → ∞, the fluctuation in the number of links in the G(n, p) graph decreases

and both variants are equivalent for m =
(
n
2

)
p. Here we will study the G(n, p)

variant (and call it the ER network from now on), as it is both easier to work with

analytically and to generate on a computer. The link generation in the ER network

is a binomial process with probability p, and therefore the degree distribution is

given by

pERk =

(
n− 1

k

)
pk (1− p)n−1−k (2.21)

In the limit of large n we can take the Poisson approximation to the binomial
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distribution. In this limit, we have (1− p)n−1−k ' e−(n−1)p and
(
n−1
k

)
' (n− 1)k/k!,

and with K = (n− 1)p we can write

pERk =
(n− 1)k

k!
pke−K =

Kk

k!
e−K (2.22)

which is a Poisson distribution . That is the reason the ER network is sometimes

called the Poisson random graph.

Perhaps the most interesting property of the ER network is regarding its giant

component. The largest component of a network is the biggest set of nodes in the

network where a path exists between any two nodes. In other words, it is the biggest

group of nodes where, starting from a random node, you can reach any other node in

the group by jumping from one node to another. The size of the largest component is

an important feature, as usually in applications it is crucial to have a network where

a large portion of the nodes are reachable from one another. In the ER network, the

size of the largest component is equal to 1 for p = 0 and n for p = 1. Therefore, in

terms of the network size, the largest component is an intensive quantity for p = 0,

but extensive for p = 1. A transition must occur from one regime to the other.

When the largest component scaling is extensive we call it a giant component. For

n → ∞, the fraction S of nodes of the largest component in ER networks can be

obtained[10] from

S = 1− e−KS (2.23)

which can be solved graphically or numerically as a function of K. In Fig. 2.5 we

have the result of the numerical solution of Eq. 2.23.

Figure 2.5: Size of the largest connected component in Erdos-Rényi networks.

The size of the largest component goes through a second-order phase transition,

with a giant component appearing at K = 1 (or p ' 1/n). In other words, at
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the thermodynamic limit the number of links needed for the entire network to be

reachable is one4. This is very similar to the problem of percolation in infinite

dimensions[4]. The percolation threshold in a Cayley tree is given by pc = 1/(z−1),

where z is the tree’s coordination number. The coordination number in a random

network of n nodes is given by z = n − 1. This results in pc ' 1/n, which is the

same critical probability where the giant component appears in ER networks.

The second model of network connectivity we will describe is the Barabási-Albert

network[35]. The model proposes a simple mechanism of link generation capable of

generating scale-free networks. The relevance of the BA model is that many real-

world networks possess power-law degree distributions, like the ones in Fig. 2.6.

Figure 2.6: Examples of real-world networks with power-law degree distributions
pk ∼ k−γ. (A) Actor collaboration network, with γactor = 2.3. (B) World Wide
Web, with γWWW = 2.1. (C) Power grid network, with γpower = 4. Reproduced
from [35].

The algorithm for generating a BA network is the following: starting with a

completely connected network of m0 nodes, at each time step a new node with m

new links is added, with m ≤ m0. The probability pi of a previously existent node

i being chosen to connect with the new node is given by pi = ki/
∑

j kj, for each

new link. The process continues until a desired network size n is reached. In other

words, the BA model uses a“rich gets richer”concept of network growth. This means

that an already highly connected node is more likely to increase its degree than a

node with fewer links. This idea, also known as preferential attachment, encounters

parallels in many real-world networks with a power-law distribution. For instance

in an actor collaboration network, such as in Fig. 2.6(A), it is most likely that a

new actor will be cast in a supporting role with a more established actor.

4Strictly speaking, one would also need to prove that the solution S > 0 is the one chosen for
K > 1, as opposed to S = 0 which is always a solution of Eq. 2.23. This can be done by considering
how the periphery of a component grows with K[10].
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The degree distribution of the BA network as described above can be calculated,

in the n→∞ limit, from a continuum approach as

pBAk =
2m2

k3
(2.24)

which gives5 a power-law with an exponent of γBA = 3. Therefore, preferential

attachment can be suggested as an explanation of the scale-free behavior seen in

some systems. It is important to note that both preferential attachment and network

growth (addition of one node at a time) are essential for the appearance of power-law

scaling. In a model variant without preferential attachment the degree distribution

decays as pk ∼ exp (−k/m). In a model with all the nodes present at the beginning

the degree distribution is not stationary, with the network eventually becoming fully

connected.

The model studied by Barabási & Albert is, in fact, a special case of what is

known as the Price model[39], after Derek Price. In this model, the probability of

a node i receiving a link from a new node is given by pi ∼ kini + a, where kini is the

node’s in-degree and a is an attachment parameter. This models yields the degree

distribution

pPricek ∼ k−(2+a/K) (2.25)

which is a power-law distribution with exponent γPrice = 2+a/K. The BA model can

be obtained by setting a = m and noting that K ' m for BA networks. Therefore,

while BA networks have a fixed power-law exponent γBA = 3, in the Price model

the exponent can be controlled with a parameter. Many modifications to the BA

model have been proposed to address shortcomings of the model regarding real-world

networks. These include a node fitness function in addition to the degree[40] and a

node aging process[41].

Scale-free networks, besides being common in nature, possess interesting prop-

erties. As already mentioned, scale-free networks are very susceptible to disease

spreading[36]. They are also at the same time robust against random failure and

weak against targeted attack[42]. In both processes, a fraction f of the nodes is

removed and the topology of the resulting network is analyzed. In random failures

the nodes selected for removal are chosen at random, whereas in a targeted attack

the nodes with highest degree are removed. As can be seen in Fig. 2.7, ER networks

are equally susceptible to random and targeted removal. The size S of the largest

5A master equation approach[38] yields pk = 2m(m+1)/ [k(k + 1)(k + 2)], which is very similar
to Eq. 2.24.
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cluster goes through a second-order phase transition with the same critical fraction

fc for both cases. This is a result of the degree distribution of these networks. The

standard deviation of the distribution of Eq. 2.22 is only
√
K, meaning there is not

much difference between choosing the node with the highest degree and a random

node. The situation is different for BA networks, however. For a random attack S

decreases slowly, while for a targeted attack it has the same behavior of ER net-

works, albeit with a lower fc. This means that BA networks are more robust than

ER networks against a random attack, but more susceptible against a targeted at-

tack. This can be explained by the fact that in BA networks most nodes have low

degree, with a few nodes possessing very high degree. Therefore, a random failure

is likely to remove a node with low degree, incapable of disrupting a large number

of paths in the network. On the other hand, a targeted attack will remove a much

larger number of links, larger than of a ER network of similar connectivity. Thus, a

targeted attack will heavily disrupt the connectivity of a BA network.

Figure 2.7: Network robustness against random failure (blue squares) and targeted
attack (red circles), by removing a fraction f of the nodes. S (empty points) is the
size of the largest cluster in the network, and < s > (filled points) is the average
size of the other clusters. The metrics are calculated for (a) ER networks and (b)
Barabási-Albert networks. Both networks have the same average degree. Adapted
from [42].

The last model of connectivity we will address is the Watts-Strogatz (WS)

network[14]. While ER networks use a simple linking rule, and BA networks explore

preferential attachment, WS networks examine the small-world concept. Small-

world networks are functionally integrated, as the average distance between nodes

is small. On the other hand, highly clustered networks are functionally segregated,

as nodes are divided in small groups. The WS model is capable of generating a

small-world network that also maintains a high clustering coefficient C.
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The WS network is generated in the following way: first we start with a ring net-

work6 with n nodes and K neighbors per node. Each link is then rewired randomly7

with probability p. The average degree K is chosen so that n� K � ln(n), which

guarantees a connected network (S = 1) in the p→ 1 limit, where we obtain an ER

network. The clustering coefficient of the ring network (p = 0) can be calculated as

C (0) = (3K−6)/(4K−4), which converges to the high value of 3/4 as K increases.

However, its average path length L(p) is L (0) ' n/2K, scaling linearly with net-

work size. In the limit p = 1 we have an ER network, whose path length scales

logarithmically as L (1) ' ln(n)/ln(K) but with a low clustering C (1) ' K/n. The

rewiring process is depicted in Fig. 2.8.

Figure 2.8: Graphical representation of the Watts-Strogatz model. By varying p
the model is able to go from an ordered ring network (p = 0) to a random network
(p = 1), with a small-world network for intermediate values. Reproduced from [14].

The idea behind the WS network is that, by shuffling a small number of links,

these links can serve as shortcuts between distant regions. Therefore, while the

clustering coefficient C would not be very affected, the average path length L would

be reduced. In Fig.2.9 we have the normalized measures L (p) /L (0) and C (p) /C (0)

for varying p. Note that L (p) decays faster than C (p). The WS model was the first

model to propose a mechanism for the generation of small-world networks with high

clustering, and sparkled much interest in the properties of such networks[43, 44].

6A ring network is a type of network topology where nodes are placed in a circular configuration
and linked to their nearest neighbors in the circle.

7More precisely, both edges of the link are considered separately.
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Figure 2.9: Normalized average path length L (p) /L (0) and clustering coefficient
C (p) /C (0) for varying shuffling probability p. Reproduced from [14].
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3
Theory of Random Threshold Networks

3.1 Definition

Random threshold networks (RTN) have been used to model a vast array of phe-

nomena, from neural networks[45] to genetic regulatory networks[46, 47]. A RTN is

a dynamical system where each element is associated with a Boolean variable (“on”

or “off”) and the activation of an element depends on a threshold. Let us consider

a network with n randomly connected nodes and average degree K. Each existing

link from node j to node i is assigned a weight wij ∈ R, and the dynamical state of

each node is given by a Boolean variable. The state σi(t+ 1) of node i at time t+ 1

is then given by

σi(t+ 1) =

1 , if
∑n

j=1wijσj(t) > h

0 , if
∑n

j=1wijσj(t) ≤ h
(3.1)

where h ≥ 0 is a threshold parameter. The matrix W , whose entries are the links

wij, is not necessarily symmetric, and the link weights are not necessarily unitary.

In other words, a RTN can be a directed and/or weighted network. A network with

the dynamics defined in Eq. 3.1 constitutes a Random Threshold Network.

Large-scale networks with Boolean variables were first introduced by Kauffman[48]

in the context of gene regulation networks, and have been extensively studied since[49].

In this model, called a Random Boolean Network (RBN), the dynamical state

σ′i(t+ 1) ∈ {0, 1} of a node i is given by

σ′i(t+ 1) = Fi
(
σ′i,1(t), σ

′
i,2(t), ..., σ

′
i,k(t)

)
(3.2)

where Fi is a Boolean function and σ′i,,j denote the neighbors of i. Since the threshold

function is a Boolean function, threshold networks are a subset of the ensemble of all

21
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possible RBNs. The behavior of RTNs differ considerably from their general RBN

counterparts, however[50].

From Eq. 3.1 we can see that RTNs are memoryless (or Markovian) deterministic

systems with discrete time and updated in parallel. Information is only propagated

by active nodes (σi = 1). This contrasts with the behavior of spin models such as

the Ising model, where both ±1 states propagate information. Since both Boolean

and spin are two-state models, the dynamics of Eq. 3.1 can be mapped to spin

values with

σi(t+ 1) =

1 , if
∑n

j=1wijσj(t) > h−
∑n

j=1wij

−1 , if
∑n

j=1wijσj(t) ≤ h−
∑n

j=1wij
(3.3)

which equates to every node possessing its own individual threshold hi = h−
∑

j wij.

Therefore, the dynamics of Boolean threshold models can be very different from the

dynamics of spin threshold models.

Alternative variations of random threshold networks exist. Some authors add a

third, self-regulating possibility to Eq. 3.1, given by σi(t+1) = σi(t) if
∑n

j=1wijσj(t) =

h [51, 52]. This can break the ergodicity of the dynamics by introducing long-term

temporal correlations between the dynamical states[50]. While this change adds new

rich dynamics, it is more complicated and may not be important to some applica-

tions. For instance, in biological networks it may not be reasonable for the input

sum of a node to be exactly equal to the threshold. Another possible variation is

to consider sequential node updates instead of parallel updates. In this case, only

one node is updated at each time step according to some sequence. This type of

sequential update can impact the dynamics, for instance changing the number of

attractors and attractor lengths in the network[53]. However it also makes for a

more complicated model, as it becomes necessary to analyze the impact of different

update sequences1.

In this dissertation we will study and use the simpler RTN model, as defined in

Eq. 3.1 and with a parallel update rule. The link weights are taken as wij = ±1,

meaning a node can either activate or inhibit its neighbors. The control parameter

of the topology is the fraction of positive links F+, defined as

F+ =
∑
i,j

sgn(wij + 1)�
∑
i,j

|wij| (3.4)

1One can also make the update sequence random. However, this changes the dynamics from
deterministic to stochastic, which presents its own set of problems.
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The dynamics starts with an initial state ~σ(0) = {σ1(0), σ2(0), ..., σn(0)} and is up-

dated for each node in parallel afterwards. We are interested mainly in the network

collective state, measured by the fraction of active nodes A(t) given by

A(t) =
1

n

∑
i

σi(t) (3.5)

We also focus on densely connected networks (K > 10), since many real-world

networks are highly connected. For instance, neurons in the human cortex possess

around ∼ 60000 synapses each[54]. This high number of connections is thought to

increase the information processing capacity in the brain[55].

3.2 Dynamics of Random Threshold Networks

In this section we will explore the dynamics of Random Threshold Networks with

variable positive link fraction F+. While some dynamical properties of RTNs, such

as sensitivity[50] and number of attractors[53] have been extensively studied, we are

unaware of a study on the effect of the variable F+ on the fraction of active nodes

A(t). In most RTN and spin models, links are either always excitatory (F+ = 1)

or excitatory and inhibitory with equal probability (F+ = 0.5). However, in many

applications the balance of excitation and inhibition is known to be different from

these cases. In particular, the fraction of excitatory neurons in the mammalian cor-

tex is around 70-80%, with inhibitory neurons thought to be essential in regulating

brain activity[56].

A typical simulation result of the active fraction A(t) is shown in Fig. 3.1. for

Barabási-Albert[35] (left) and Erdos-Rényi[10] (right) network topologies, with n =

104 nodes. After an activation of a fraction A(0) of its nodes, chosen randomly, the

network quickly reaches a stable activityA∞ = A(t → ∞). The resulting dynamics

is largely independent of initial conditions, provided A(0) is larger than a certain

value AC0 necessary for A∞ > 0. Since the degree distribution for an Erdos-Rényi

network is a Poisson distribution and the Barabási-Albert one is a power law, the

active fraction is also largely independent from the degree distribution. Therefore,

for the rest of this section we will assume the topology to be of an Erdos-Rényi

network2.

2There are some slight changes in the parameter space color map for a Barabási-Albert network
for low degree. However the color map’s general behavior is the same.
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Figure 3.1: Network active fraction for Barabási-Albert (left) and Erdos-Rényi
(right) topologies, with many initial conditions A(0). The parameters are n = 104,
K = 50, h = 1 and F+ = 0.45 for both cases.

The dynamics is very sensitive to the value of F+, however. In Fig. 3.2 we have

the value of A∞ for the (F+, K) parameter space with h = 0 and 1. For small F+

(mostly inhibitory links) the activity dies out, and for high F+ it takes over the

network. There is a clear transition in A∞ around F+ = 0.5, and the transition

range widens with smaller average degree K. It is important to note that the value

of A∞ does not depend on network size.

Figure 3.2: Stable activity A∞ color map for simulation data with h = 0 (left) and
h = 1(right). The other parameters are n = 104 and A(0) = 0.1 for both cases.
Each of the 900 data points is an average of 10 networks.
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In Fig. 3.3 we have a color map for the average3 minimum activation AC0 with

A∞ > 0 and the corresponding A∞. The value of AC0 depends mainly on the average

degree K, and can be very low for higher K. There is also no dependence on AC0 for

A∞. This comes from the overcritical nature of high-degree RTNs with low h. If we

view the initial activation as a perturbation, in these networks a perturbation tends

to quickly take over the entire network. Therefore, the value of an A(0) larger than

AC0 basically dictates the spreading speed. The only exception is the extreme case

of A(0) ≈ 1 and low F+. In this case sometimes we get A(1) = 0 even if A∞ 6= 0 for

a lower A(0).

Figure 3.3: Minimum number of active nodes nAC0 (left) so that A∞ > 0 and the
corresponding A∞ (right). If the network could not be activated with any A(0) we
set A∞ = 0. Parameters are n = 500 and h = 1.

3.3 Annealed approximation

To obtain a better insight on the dynamics of RTN we develop an expression for

the stable network activity A∞ = A(t → ∞). We start with the annealed approx-

imation, introduced by Derrida & Pomeau[57]. The idea of this approximation is

to ignore temporal correlations between nodes, effectively making each node inde-

pendent. The activation probability of a given node with m > h active in-degree

3The probability of survival of the dynamics after the first few timesteps is a sigmoid function
of A (0). As n → ∞, it becomes a step function, and we can identify the activation threshold
AC0 . By taking the average threshold of a large number of simulations we are able to obtain AC0
numerically.
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neighbors, Pactive(m), is given by the binomial cumulative distribution

Pactive(m) =
m∑

l=bm+h
2
c+1

(
m

l

)
F l
+ (1− F+)m−l (3.6)

where F+ is the network’s fraction of positive links and h the activation threshold,

with bxc denoting the floor function4 of x. The probability of a node i with in-degree

ki being active at time t+ 1 is given by

P [σi(t+ 1) = 1, ki] =

ki∑
m=h+1

{(
ki
m

)
A(t)m (1− A(t))ki−m Pactive(m)

}
(3.7)

Summing over ki, we have

P [σi(t+ 1) = 1] =
n−1∑
k=1

pk

k∑
m=h+1

{(
k

m

)
A(t)m (1− A(t))k−m Pactive(m)

}
(3.8)

where pk is the degree distribution of the network. Since we assume the nodes to be

independent, the number of active nodes at time t + 1, nA(t + 1), will be given by

the expected value of a binomial distribution with probability P [σi(t+ 1) = 1] and

n trials:

nA(t+ 1) = nP [σi(t+ 1) = 1] (3.9)

A(t+ 1) =
n−1∑
k=1

pk

k∑
m=h+1

{(
k

m

)
A(t)m (1− A(t))k−m Pactive(m)

}
(3.10)

The expression in Eq. 3.10 is the annealed approximation, and can be found in [50].

It can be interpreted as a map from A(t) to A(t + 1), meaning that from an initial

condition A(0) we can calculate A(t) for any t. If we consider the limit t→∞, we

have the self-consistent equation

A∞ =
n−1∑
k=1

pk

k∑
m=h+1

{(
k

m

)
Am∞ (1− A∞)k−m Pactive(m)

}
(3.11)

4The floor function of x is defined as the integer part of x.
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We now make further approximations to Eq. 3.11 in order to get a more manageable

expression. The regularized incomplete beta function is defined as

Iz(a, b) =

´ z
0
ta−1(1− t)b−1dt´ 1

0
t′a−1(1− t′)b−1dt’

(3.12)

for a > 0, b > 0 and z ∈ [0, 1]. Integrating by parts, one can show that

Ip(n+ 1, N − n) =
N∑

i=n+1

(
N

n

)
pi(1− p)N−i (3.13)

In terms of the regularized incomplete beta function, Eq. 3.6 can be written as

Pactive(m) = IF+

(
bm+ h

2
c+ 1,m− bm+ h

2
c
)

(3.14)

Approximating bx/2c ≈ x/2− 1/4, we have

Pactive(m) = IF+

(
m+ h+ 3/2

2
,
m− h+ 1/2

2

)
(3.15)

Substituting Eq. 3.15 into Eq. 3.11, we have

A∞ =
n−1∑
k=1

pk

k∑
m=h+1

{(
k

m

)
Am∞ (1− A∞)k−m × IF+

(
m+ h+ 3/2

2
,
m− h+ 1/2

2

)}
(3.16)

Simulations indicate that the behavior of A∞ depends little on the degree distribu-

tion. Therefore we can replace the sum over pK for the average degree K

A∞ =
K∑

m=h+1

(
K

m

)
Am∞ (1− A∞)K−m × IF+

(
m+ h+ 3/2

2
,
m− h+ 1/2

2

)
(3.17)

For m� 0, IF+

(
m+h+3/2

2
, m−h+1/2

2

)
is a slow-varying function, so we make another

approximation by removing it from the innermost sum. This implies a distance from

the transition between activity and no activity. Substituting m for its average value

m̄ = KA∞, we have

A∞ =

[
1−

h∑
m′=0

(
K

m

)
Am

′

∞ (1− A∞)K−m
′

]
×IF+

(
KA∞ + h+ 3/2

2
,
KA∞ − h+ 1/2

2

)
(3.18)
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where we used the fact that
∑K

m=0

(
K
m

)
Am∞ (1− A∞)K−m = 1. If we assume K � h,

which is true especially for h > 0, we can approximate
∑h

m′=0

(
K
m′

)
Am

′
∞ (1− A∞)K−m

′
≈

0, resulting in

A∞ = IF+

(
KA∞ + h+ 3/2

2
,
KA∞ − h+ 1/2

2

)
(3.19)

which can be written as

A∞ =

´ F+

0
t(KA∞+h+1)/2 (1− t)(KA∞−h−1)/2 dt´ 1

0
t′(KA∞+h+1)/2 (1− t′)(KA∞−h−1)/2 dt’

(3.20)

Equation 3.19 can be solved numerically in order to yield A∞. In particular, we can

use the inverse incomplete beta function5 to obtain

F+ = I−1A∞

(
KA∞ + h+ 3/2

2
,
KA∞ − h+ 1/2

2

)
(3.21)

which gives the F+ necessary for the generation of a threshold network with spec-

ified A∞ and K. Most popular algebra packages, for instance MATLAB(R) and

Mathematica(R), have built-in functions for the incomplete beta function and its

inverse. This makes Eq. 3.19 and Eq. 3.21 easier to use than the previous result of

Eq. 3.11.

This annealed approximation explains certain properties of RTNs. First off,

the result is independent of network size n. This is seen in simulations, where the

network size only dictates the size of the fluctuations around A∞. The approximation

discards these fluctuations, eliminating the dependence on n. As K increases the

non-trivial (A∞ 6= 0 and 1) dynamic states become more centered around F+ = 0.5,

which is the behavior of the regularized beta function IX(a, a) when a is high[58].

For low connectivity there is an asymmetry towards higher F+. In terms of the

approximation, this has its origin in the asymmetry of h+ 1/2 in the arguments of

IF+ that vanishes as KA∞ increases. In Fig. 3.4 we plot the phase space of Eq. 3.19

for h = 0 and h = 1.

5If Y = IX(a, b), then X = I−1Y (a, b).
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Figure 3.4: Stable activity A∞ (K,F+) color map of the mean-field approximation
for h = 0 (left) and h = 1 (right).

The mean-field results qualitatively match the simulation results, with some

divergence for low K. This can be seen in Eq. 3.19, where h = 0 and K = 0 results

in a non-zero A∞ = IF+ (3/2, 1/2). For a more quantitative comparison, in Fig. 3.5

we compare the analytic and simulation results for a fixed degree K. It is important

to note that in the approximation we assumed a high degree K. Therefore, the

lowest degree we will use when comparing the approximation to simulation data will

be K = 10.
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Figure 3.5: Comparison between the theoretical prediction and simulation results
with fixed degree K for h = 0 (left) and h = 1 (right).
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For h = 0 there is an excellent match between the approximation and the sim-

ulation. The result is less clear for h = 1. As we approach the transition between

activity and no activity a low A∞ solution for Eq. 3.19 appears. Before addressing

why this solution shows up, let us analyze the results for a fixed F+ in Fig. 3.6.
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Figure 3.6: Comparison between the theoretical prediction and simulation results
(n = 1000) with a fixed positive fraction F+ for h = 0 (left) and h = 1 (right).

In this case the approximation also matches well the simulations for h = 0, with

some divergence near the activity transition for h = 1. Since Eq. 3.19 is a transcen-

dental equation, we used an optimization method in order to solve it numerically.

This led to some numerical errors near and before (lower K) the transition between

A∞ = 0 and A∞ > 0 in Fig. 3.6. After this transition, however, the approximation

fits well the simulation results.

The discrepancy between the simulation and mean-field results for h = 1 and low

A∞ is expected, as our assumption that Pactive(m) (Eq. 3.15) is slow-varying breaks

down at m ≈ 0. The low A∞ solution in Fig. 3.5 (right) is therefore not an unstable

fixed point, and is not present in Eq. 3.17. Since Eq. 3.21 is defined for every choice

of (A∞, K) with KA∞− h+ 1/2 > 0, it will provide an F+ even when such a choice

is not possible. This happens when A∞ goes through a first-order phase transition,

which is more visible for h = 1 and low K, as seen in Fig. 3.5 (right) for K = 10. In

other words, the approximation fails at the transition between A∞ = 0 and A∞ > 0

because it is a first-order phase transition. However, this failure is only of one type:

predicting a non-zero A∞ for a network with A∞ = 0. When the network has a

non-zero A∞, our approximation is accurate.
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3.4 Phase transition of A∞
In order for our approximation to be practical, we must find its domain of validity.

This will give a range of values where it can be applied. Therefore, we must find the

lowest activity Amin∞ > 0, for any F+, that the network can have for a fixed K. With

this in hand, we can safely use Eq. 3.21 to predict the F+ a network must possess

to have an activity A∞ ≥ Amin∞ with a certain degree K. In other words, we must

study the phase transition between activity and no activity in the network. First,

we must show that A∞ indeed goes through a first-order phase transition. To do so,

we plot the results of a large number of simulations with random F+ and h > 0. In

Fig. 3.7 we show the results for h = 1 and h = 2.

Figure 3.7: First-order phase transition of A∞ for h = 1 (left) and h = 2 (right).
The other parameters are n = 1000, K ∈ {10, 20, 30}and A(0) = 0.5. Each curve is
the result of 104 simulations.

Since Amin∞ depends only on K, one way to find it is to run simulations covering

F+ ∈ [0, 1] and obtain Amin∞ = Amin∞ (K) for any desired h. The behavior of the

network appears to differ substantially between h = 0 and h > 0, so we will analyze

these cases separately. The simulations are done in the following way: for a certain

size n and degree K, we generate networks with F+ starting at zero and increasing in

steps of 0.01. When a network with A∞ > 0 is found, we stop the process and register

the activity as Amin∞ . The reasoning is that if A∞ > 0 for a certain F+, then A
′
∞ > 0

for another F
′
+ > F+, and A

′
∞ ≥ A∞. This behavior is supported by simulations.

For completeness, the initial condition for every simulation is A(0) = 0.5. In Fig.

3.8 we have the results of Amin∞ for h = 0, and K ∈ [10, 200].
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Figure 3.8: Minimum activity Amin∞ for any F+. The parameters are 10 < K < 200
and n ∈ {200, 500, 1000}. The threshold is h = 0 and every point is the average of
20 simulations.

The minimum activity Amin∞ increases with larger K, but it is small for K < 200.

For n = 500 and K = 10, for instance, the minimum number of active nodes is

around 5. Therefore, for h = 0 and A∞ > 0.15 one can safely use Eq. 3.21. There is

also a small dependence on the network size, with Amin∞ decreasing with larger n. In

Fig. 3.9 we have the behavior for various h > 0 and n = 200. This size n was chosen

because it establishes a higher bound in Amin∞ for higher n - if a certain desired A∞

is larger than Amin∞ for n = 200, it will also be for n > 200.

Figure 3.9: Minimum activity Amin∞ for any F+. The parameters are 10 < K < 200
and n = 200. The threshold is h ∈ {1, 2, 3} (left) and h ∈ {4, 5, 6} (right). Every
point is the average of 100 simulations.
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For h > 0, the dynamic exclusion region can be very large. Contrary to the case

h = 0, for h > 0 the value of Amin∞ decreases with larger K. This means that the

dynamic range ∆A = 1− Amin∞ decreases with K for h = 0 but increases for h > 0.

This difference in behavior can be seen, less clearly, in Fig. 3.2 for h = 0 and h = 1.

Whereas for h = 0 we can usually assume Amin∞ < 0.15, for higher h it depends

strongly on K. In particular, for h = 5 and K ≤ 10 we have no activity whatsoever

with n = 200, while for K = 200 every A∞ > 0.2 is available.

The simulations in Figs. 3.8 and 3.9 establish the domain of validity for our

mean-field approximation for a wide range of parameters. Therefore, in order to use

the approximation one must examine Figs. 3.8 and 3.9 to find out if the desired A
′
∞

is larger than the minimum activity. If that is the case, then Eq. 3.21 gives the F+

required for the generation of a RTN with activity A
′
∞.

3.5 Measures of damage spreading

The dynamics of the RTN model is deterministic. Therefore, if the dynamical states

of two identical networks are equal at time t, they will always be equal in the future.

In real-world networks, however, the system may suffer a dynamical error or be

affected by external influences. Thus, we are interested in studying the resilience

of the system to external perturbations. These perturbations come in the form of

externally changing the state of a node (or group of nodes) and examining how the

change spreads with time.

Our main tool in analyzing the response to perturbations in RTNs is the Ham-

ming distance . We define the Hamming distance between two configurations with

node states σi(t) and σ̃i(t) as

H(t) =
∑
i

|σi(t)− σ̃i(t)| (3.22)

In other words, the Hamming distance measures the number of nodes with different

states between two different configurations. If we consider the configuration with σ̃i

as a perturbed version of the one with σi, then H(t) measures how the perturbation

spreads through the network. Let us define the asymptotic value of H(t), averaged

over many different perturbations of the same size6 as

H∞ = 〈 lim
t→∞

H(t)〉 (3.23)

6That is, different perturbations that change the value of the same number of node states.
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If H∞ = 0, then a perturbation will vanish from the dynamics, and we consider the

network in the ordered regime. If H∞ > 0, the perturbation stays in the network and

the network is in the chaotic regime. If H∞ = 0 only marginally, then perturbations

take a long time to be removed from the network. We call this the critical regime.

The value of H∞ therefore acts as an order parameter of the dynamics[50], and can

be computed directly from Eq. 3.23. Another way to compute H∞ is using the

Derrida plot (also called the Derrida Map)[59]. The Derrida Plot relates the size

of a perturbation H(0) with itself after one time step, H(1) = M(H(0)). In other

words, it is the perturbation size one time step after it happens, as a function of the

original perturbation size. Let us define the average network sensitivity S as

S =
dM(H0)

dH0

∣∣∣∣
H0=0

(3.24)

which is the slope of the Derrida Plot as the size of the perturbation goes to zero.

From mean field considerations[50], we see that if S < 1 then H∞ = 0 and the

network is in the ordered regime. If S > 1 we have H∞ > 0 and the network is

in the chaotic regime. The critical regime happens for S = 1. Therefore, one can

only look how the network responds to small perturbations in order to ascertain its

dynamical regime. If the network is critical, then the Derrida Plot shall follow the

bisection H(1) = H(0) for small perturbations.



4
Adaptive Networks

4.1 Definition

The study of networks can be divided in two main lines of research. The first is

concerned with the characterization of network topology. This is done mainly with

metrics, such as those described in Sections 2.2 and 2.3, and models of connectivity,

like those in Section 2.4. The second line of research is concerned with dynamics on

networks. Examples include models of oscillators like the Kuramoto model[60], spin

models[61] and contact processes such as the SIS model[36]. Following this scheme,

we study dynamical systems and how the underlying topology of these networks

affects such systems.

Real-world networks in general evolve their topology in time. Moreover, in many

networks there is an influence of the network’s dynamical state on this evolution.

A prime example is the brain, where the ability to learn can be thought of as the

interplay between the dynamical state (neuronal firing patterns) and the topology

(distribution of neurons and synapses)[62]. Other example are power-grid networks,

where new transmission lines are built to remove bottlenecks. Another example

are epidemiological networks. The human behavior can change with weather, with

people staying in closed environments, and in large epidemics with widespread panic.

These changes can alter how the disease spreads.

An adaptive network is a network model where there is an interplay between

dynamical and topological evolution[63]. As already mentioned, the topology of a

network can deeply affect its dynamics. In an adaptive network, there is an effect of

the dynamics on the topological evolution, according to some rule. In other words,

the topology affects the dynamics, but the dynamics also influences the topology.

This feedback mechanism is represented in Fig. 4.1.

35
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Figure 4.1: Evolutionary mechanism of an adaptive network, showing the interplay
between topology and dynamics. Reproduced from [64].

Adaptive network models have been implicitly studied in many fields and under

different names, such as network creation games in engineering[65]. The systematic

study of adaptive networks and their properties is a recent effort, however. By com-

paring different models, it became clear that certain properties are common among

adaptive networks[64]. These properties include the formation of complex topolo-

gies and more complex dynamics than their counterpart models on fixed networks.

Another property, associated with the complex topology, is a spontaneous division

of labor in the network. For instance, the network can divide itself into leaders,

that can strongly affect the network dynamics, and followers, that do not. Lastly,

another property seen in many adaptive models is Self-Organized Criticality (SOC).

In SOC models, the co-evolution between topology and dynamics leads the network

to a critical state. In the next sections we will briefly present models that illustrate

these properties.

4.2 Complex dynamics and topology

Let us first consider a simple epidemiological model, the susceptible-infected-susceptible

(SIS) model. In the SIS model, each node is an individual that can either be sus-

ceptible (S) or infected (I) by a disease. Susceptible nodes can become infected, and

infected nodes eventually recover and become susceptible again. In our particular

realization, each infected node can pass the disease to each of its neighbors at each
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time step with fixed probability p. Each infected node can also recover to susceptible

with probability r per time step. The average number of infections an infected node

generates, given by R0, can be used to predict how the disease spreads. If R0 > 1

then the disease will spread and take over the network, if R0 < 1 then it will even-

tually die off. For a network with an average degree K we can calculate R0 = pK/r.

Setting R0 = 1 we have the critical transmission rate p? = r/K. Therefore, if our

disease has a higher transmission rate than p? it will eventually take over the entire

network1.

In 2006, Gross and collaborators[66] proposed the following modification to the

SIS model: at each time step, a susceptible node can cut its link to an infected node

with probability w. The cut link is then rewired to another susceptible node. This

is an example of a simple adaptive network, and it emulates the behavior of humans

regarding infectious diseases. The critical transmission rate for this model can be

calculated as

p?AN =
w

K [1− exp (−w/r)]
(4.1)

Note that p?AN ≈ r/K +w/2K +O (w2) and therefore Eq. 4.1 recovers the previous

result for w = 0. Moreover, we have p?AN = w/K for w � r. Therefore, a high

rewiring can increase the critical transmission rate, significantly changing the dy-

namics of the model. The rewiring also changes the topology. To better understand

this change, we can compare the model to two limiting cases: a random rewiring

independent of the node state (S or I), and a case without infection and recovery

(p = r = 0). The differences can be seen in the degree distribution pk, plotted in

Fig. 4.2.

1It is worth noting that this offers a possible explanation for the flu season. During the winter,
people tend to stay in closed and crowded environments. This increases K of the social network,
increasing R0 and making the virus more likely to spread.
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Figure 4.2: Degree distribution pk of the SIS adaptive model. The black dots are for
the infected, and the circles for the susceptible nodes. Model with random rewiring
independent of state (left). Model without infection and recovery (p = r = 0)
(center). Adaptive network model with w = 0.3, r = 0.002 and p = 0.008. Other
parameters are the number of nodes n = 105 and average degree K = 20. Adapted
from [66].

The topological evolution without the feedback from the local dynamics (Fig.

4.2, left) leads to a Poisson degree distribution. Without the dynamics itself (Fig.

4.2, center) the network breaks into two isolated components: one of susceptible

nodes, one of infected nodes. They have different average values (depending on the

initial number of infected), but they still follow a Poisson distribution. For the full

adaptive model however (Fig. 4.2, right) we see a clear distinction between pk for

the infected and susceptible nodes. Both distributions are broader than the other

cases. This is an example of a complex topology resulting from a simple adaptive

algorithm. This evolving topology also produces complex dynamics. Infected nodes

lose links, which in principle would prevent spreading of the disease. However, the

rewired links create densely-connected groups of susceptible links. These groups are

vulnerable, and when the disease invades the group by infecting one member, it can

quickly infect the entire group[66].

Another model with an interesting co-evolution between topology and dynamics

was devised by Aoki & Aoyagi[67]. In this model, each node possesses a quan-

tity xi(t) of a resource that diffuses through the network in time. The network is

undirected but weighted, with weights wij(t) that change in time depending on the

resource of nodes i and j. The underlying topology of the network is fixed, and

given by an Erdos-Rényi network with n nodes and average degree K. Only pairs

of linked nodes (aij = 1) can have wij(t) 6= 0. The change in resource of a node
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∆xi(t) = xi(t+ 1)− xi(t) is given by

∆xi(t) = −κ(xi(t)− 1) +D
∑
j

(
wij(t)

sj(t)
xj(t)−

wij(t)

si(t)
xi(t)

)
(4.2)

where F (x) = −κ(x− 1) is a self-dissipation term with an equilibrium state x = 1,

and κ and D are parameters. The strength of node i is si(t) =
∑

j wij(t). The

second term in Eq. 4.2 is a diffusive term. It can be obtained by noting that the

resource sent by node i to node j is proportional to wijxi/si. The evolution in the

link weight ∆wij(t) = wij(t+ 1)− wij(t) is given by

∆wij(t) = ε [xi(t)
αxj(t)

α − wij(t)] (4.3)

where α and ε are parameters. The link weight change in Eq. 4.3 is akin to a

chemical reaction between the resources xi and xj that strengthen the link wij. In

terms of a chemical reaction, it is equivalent to

α[xi] + α[xj]
 [wij] (4.4)

where the brackets denote the quantity of a substance, and α the proportion of

reagents. From the law of mass action, the forward rate of the reaction will be

given by fr(t) = εxi(t)
αxj(t)

α, and the backward rate by fb(t) = εwij(t). In this

case, the parameter ε is identified with the affinity constant of the reaction. We see

that ∆wij(t) = fr(t) − fb(t), which explains Eq. 4.3, and that at the equilibrium

wij →xαi xαj .

This model is inspired by two processes: a diffusion process for the nodes, and a

chemical reaction process for the links. Both resource and link distribution at t = 0

are taken from a normal distribution with mean 1 and standard deviation 0.1. In Fig.

4.3(a) we have a representation of the adaptation algorithm. In Fig. 4.3(b)-(d) we

have the complementary cumulative distribution function (complementary CDF)2

for the resource xi, link weight wij and node strength si for an evolved network.

2Also known as the tail distribution. If a discrete variable has a probability distribution p(x),
the complementary CDF is given by F̄ (y) = 1−

∑
x<y p(x).
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Figure 4.3: Illustration of the co-evolution of the model by Aoki et al (a). Com-
plementary cumulative distribution of the resource xi (b), link weights wij (c) and
strength si (d) for the evolved network. The underlying network is an ER network
with n = 16384 and K = 10. Other parameters are α = 1, κ = 0.05, D = 0.34 and
ε = 0.01. Reproduced from [67] .

We see that all the distributions are power-laws with different exponents. Besides

being power-laws, the final distributions are completely different from the initial

distributions, and are not present without the co-evolution. This means they are

generated by the co-evolution. The most important parameter of the model is α,

and it regulates the influence of the resource on the link evolution. In Fig. 4.4 we

have the results of the adaptive algorithm for varying α and κ = 0, meaning no

self-dissipation or generation of resource.
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Figure 4.4: Network evolution for κ = 0 in the model by Aoki et al. Simulation of
the resource distribution as a function of α, with n = 512, K = 5 and α ∈ {0.5, 1.25}
(a). Consequences on the topology for α ∈ {0.75, 1, 1.25}. The other parameters
are n = 16384, K = 10, D = 0.02 and ε = 0.01. Reproduced from [67].

A very different picture emerges for α < 1, with the resource being distributed

equally at the end of the evolution (Fig. 4.4a). The strength distribution also

changes, and starts to depend on the underlying topology (Fig. 4.4b). This model is

therefore an example of the co-evolution between topology and dynamics resulting

in a complex topology. It also generates an interesting dynamics, where a diffusion

process can have two very different outcomes depending on the influence of the

topological evolution.

4.3 Self-Organized Criticality in Boolean models

Models based on Boolean dynamics, such as Random Boolean Networks and Random

Threshold Networks (Chapter 3), are good candidates for adaptive models because

of their general simplicity. In this section we will review some simple adaptive

models based on Boolean states with Self-Organized Criticality (SOC). Introduced

by Bak & Tang in 1987[68], a SOC system is a dynamical system which robustly

poses itself at a critical state of a phase transition. More precisely, it refers to a

class of dynamical systems where a critical point is a dynamical attractor[69]. In

other words, it is a system that does not need fine tuning of parameters or initial

conditions to be in a critical state. This led to the application of SOC models to

explain a wide variety of phenomena, such as earthquakes[70], forest fires[71] and

co-evolution of species[72].

The first SOC model we will review was proposed by Bornholdt & Rohlf in

2000[73]. In this model, each of the N nodes have a spin value σi(t) = ±1, and
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undirected links wij = ±1 between them. The dynamics of each node is given by

σi(t+ 1) =

+1 , if
∑n

j=1wijσj(t) > 0

−1 , if
∑n

j=1wijσj(t) ≤ 0
(4.5)

where each nodes is updated in parallel at each time step. This is a threshold update

rule similar to the one studied in Chapter 3, with a threshold of h = 0. However,

as noted in Section 3.1, the change from binary (0 or 1) to spin values introduces

important changes to the dynamics. The adaptive algorithm is as follows. Starting

from a random initial condition, the dynamics runs according to Eq. 4.5 until it

reaches an attractor. This can be a fixed point (every node is frozen) or a limit

cycle. Then a random node i is chosen. If i remained frozen during the attractor,

it receives a new random link wij ∈ {−1, 1}. If not, it loses a random pre-existing

link. The evolution in the average degree3 Kev of the network can be seen in Fig.

4.5.

Figure 4.5: Evolution of the average degree Kev with N = 1024 and varying initial
degree Kini ∈ {1.5, 3.0} (left). Scaling of Kev as a function of N (right). Reproduced
from [73].

We see that the algorithm drives Kev towards a certain value Kc independently

of the initial degree of the network (Fig. 4.5, left). We also observe that Kev scales

as Kev(N) − 2 = cN−δ (Fig. 4.5, right). The idea behind this rule is that there

is a phase transition between frozen and non-frozen dynamics. If the degree is too

low, little input is exchanged and a large portion of the network remains frozen in

a certain state. A high degree decreases the chance of a node being frozen, since in

3Since we are describing literature results, in this section we will break our naming convention
by calling the average degree Kev and 〈K〉 in two circunstances. This is done in order to maintain
coherence with the figures.



4.3. SELF-ORGANIZED CRITICALITY IN BOOLEAN MODELS 43

this case it receives input from many nodes. This information is encoded in the size

of the frozen component C. In Fig. 4.6 we have a plot of C as a function of average

degree K and network size N for random networks.

Figure 4.6: Frozen component C of the dynamics on a random network, as a function
of the number of nodes N and average degree K. Each point is an average of 103

simulations. Reproduced from [73].

A good fit to the frozen component is given by C(K,N) = 1
2
{1 + tanh [−α(N) (K −K0(N))]},

with the parameter K0 scaling as K0(N)− 2 = αN−β. This is the same scaling re-

lationship of Kev for the evolved network, even with similar parameters. Therefore,

the adaptive algorithm drives the network towards the point where C = 1/2. Note

that for N → ∞ the transition between frozen and non-frozen dynamics becomes

a second-order phase transition, and K0 becomes the critical connectivity Kc = 2.

Therefore, in this limit the algorithm drives the network towards the critical state.

This self-organization is robust, and is an example of SOC behavior.

In a model related to the previous one, Bornholdt & Röhl explored SOC with

a different dynamics[74]. This second model uses a stochastic dynamics instead

of a deterministic one. The adaptive algorithm also uses local information instead

of global information, and is based on node correlation instead of attractors. The

behavior of the model is remarkably similar to the one from Bornholdt & Rohlf,

with the critical connectivity now being K
(2)
ev = 2.24 ± 0.03. This hints at a larger

class of SOC models with similar behavior, while possessing different dynamics and

details more suitable for different applications.

The last SOC model we will review was recently proposed by Rybarsch &



44 CHAPTER 4. ADAPTIVE NETWORKS

Bornholdt[75]. Instead of spin variables, the state of each node is given by a bi-

nary variable σi(t) ∈ {0, 1}. The probability of node i being at state σi = 1 at time

t is given by

P [σi(t+ 1) = 1] =
1

1 + exp [−2β (fi(t)− 0.5)]
(4.6)

where

fi(t) =
∑
j

wijσj(t)−Θi (4.7)

with β being an “inverse temperature” parameter and Θi a threshold parameter for

each node. The probability of a node not being activated is P [σi(t+ 1) = 0] =

1 − P [σi(t+ 1) = 1], and the link weights are wij = ±1. The network is directed.

Note that in the limit β →∞, and for Θi = Θ, we recover the RTN dynamics studied

in Chapter 3 with a threshold h = Θ + 0.5. Since the model is probabilistic (with

finite β) no initial activation is necessary - a node without input will spontaneously

activate with probability P = (1 + exp(β))−1.

The model by Rybarsch & Bornholdt uses a local adaptive algorithm based on

the Pearson correlation between nodes. The Pearson correlation Cij between nodes

i and j is defined as

Cij =
〈σi(t+ 1)σj(t)〉 − 〈σi(t+ 1)〉〈σj(t)〉

∆i∆j

(4.8)

where ∆i is the standard deviation of the time series of node i, ~σi = {σi(1), σi(2), ...}.
Equation4.8 measures the correlation between a node i at time t+1 and a node j at

time t. A high correlation implies a high synchronization between j firing at time t

and i firing at time t+ 1. The adaptive algorithm is described below:

1. Run the dynamics for τ = 100 time steps

2. Select a random node i, and measure the average Pearson correlation of i with

its neighbors, C̄i = k−1i
∑

j |wij|Cij.

3. With equal probability, either add a new in-link to i (of weight wij = ±1) or

remove a pre-existing in-link of i.

4. Run the dynamics again for τ = 100 time steps, and measure the new average

Pearson correlation of i, C̄i
′
.

5. If the correlation increased (C̄i
′
> C̄i), keep the rewiring. Otherwise revert the

network to the original state.
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6. Run the dynamics for more t = 100 steps to allow for a transient period, and

iterate from step 1.

The idea behind the algorithm is to maximize the correlation between neighbors,

taking into account a delay of one time step for signal transmission. It relies on

random changes to the topology, that are kept only if they increase the correlation.

Three metrics are used to study the evolution of the network. In terms of topol-

ogy, the metrics are the average degree 〈K〉 and the activating links ratio, i.e. the

fraction of links in the network that are positive (our F+ in Chapter 3). The metric

used to study the dynamics is the branching parameter. The branching parameter

λ is the average number of descendants of a perturbation, averaged over the entire

network. More precisely, we calculate the average number of changes in the network

dynamics at t+ 1 after changing the state of a node i at time t, denoted by λi. The

branching parameter is then λ =
∑

i λi/n. The branching parameter allows us to

estimate the dynamical phase of the network. For λ < 1, perturbations tend to died

out and the network is in a ordered, or sub-critical regime. For λ > 1 perturbations

eventually take over the network and the network is in a chaotic, or super-critical

regime. The case λ = 1 corresponds to the critical state, where a perturbation

propagates but doesn’t take over the network. In Fig. 4.7 we have the results for

the algorithm with a zero threshold (Θi = 0 ∀i) and β = 5, corresponding to a

spontaneous activation probability of 0.7%.

Figure 4.7: Time evolution of the network in the model by Rybarsch & Bornholdt.
The parameters are β = 5 and Θi = 0 ∀i. The initial network is a random network
with average degree Kini = 0 (left) and Kini = 4 (right). Reproduced from [75].

We see that the network evolves towards a degree Kc higher than one, while the

branching parameter stabilizes around λ = 1. The evolution is also independent

of the initial network, and the activating links ratio p evolves towards p = 1. A
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variation where p is kept fixed at p = 0.8 yields similar results, albeit with a higher

degree[75]. One feature commonly associated with critical networks is avalanches of

activity with a power-law distribution[68]. To study that, we can run the dynamics

on the evolved network in the RTN limit (β → ∞) and with Θi = 0 ∀i. We start

the dynamics by activating a random node at t = 0, and wait until the dynamics

dies out (i.e., σi(t) = 0 ∀i). We measure the avalanche duration and the avalanche

size. The avalanche duration T is defined as the number of time steps it stays alive.

The avalanche size S is defined as the number of nodes that are activated at least

once during the avalanche. In Fig. 4.8 we have the results of the avalanche analysis

for the evolved network.

Figure 4.8: Avalanches of activity in the model by Rybarsch & Bornholdt. The
avalanches were created by activating a single node on the evolved network. (A)
Cumulative frequency of the avalanche size S. (B) cumulative frequency of the
avalanche duration T . Results from 105 avalanches on 10 different networks of
n = 1024 nodes. Parameters are β →∞ and Θi = 0 ∀i. Reproduced from [75].

The probability distributions of avalanche size and duration follow power-laws

p(x) ∼ x−γ. Moreover, the exponents γ are γS = 1.5 for the avalanche size and

γT = 1.9. These are very close to the exponents expected for a critical network[76],

which appear in a wide variety of critical models[68, 77, 78, 79].

Avalanches with power-law size distributions also appear in many natural phe-

nomena, such as earthquakes[80]. In particular, the brain is hypothesized to be in

a critical state[62]. In a 2003 paper, Beggs and Plenz[81] showed that spontaneous

neural activity in cultured slices of rat cortex showed power law distributions for

their avalanches. Since the avalanches where obtained without any specific external

stimulation, the result suggested that the rat cortex was not only critical, but even

organized itself to a critical state. This led to the hypothesis that the brain shows
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Self-Organized Criticality. Similar results were later obtained in vivo for the rat

cortex[82] and in awake rhesus monkeys[83].

The model by Rybarsch & Bornholdt is therefore an interesting minimal model

to simulate large-scale brain dynamics. It possesses realistic properties such as

critical dynamics, a Hebbian adaptive algorithm[84] and robustness (plasticity) to

changes in the network. This robustness can be seen in Fig. 4.9, where a network is

evolved with a higher threshold Θi = 1, resulting in a higher degree 〈K〉 ≈ 10 and

a branching parameter that fluctuates more around λ = 1. A sudden change in the

threshold to Θi = 0 causes a response from the network, decreasing 〈K〉 in order

to reach the new critical state. The usefulness and simplicity of this model makes

it a good starting point to more complex models. We develop this in Chapter 6,

where we consider a similar model with deterministic (RTN) dynamics and spatial

embedding.

Figure 4.9: Network response to a change in threshold in the model by Rybarsch &
Bornholdt. The network is evolved with a threshold Θi = 1, resulting in a higher
degree 〈K〉. A sudden change in the threshold to Θi = 0 causes the network to
respond, decreasing 〈K〉 and stabilizing in the new critical state. Reproduced from
[75].
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5
An Adaptive Model with Stable Dy-

namics

5.1 Motivation and model definition

In this chapter we propose an adaptive network with threshold dynamics and a link-

removal topological evolution. Our motivation is the synaptic pruning process in the

mammalian brain, where during the adolescence a massive pruning process removes

a large portion of the neuronal synapses[8]. This process is considered essential for

the development of the brain[85]. Synapses in the brain can be either excitatory

or inhibitory[56], depending on the type of neurotransmitter used1. Moreover, the

stimuli received by a neuron must be above a certain threshold in order for the neuron

to fire. This is represented in Fig. 5.1, where we have the electrical potential of the

neuronal membrane. If the received stimuli is not above the threshold potential

(typically −55 mV) the neuron will not fire.

1Specifically we are referring to chemical synapses, where chemical substances such as glutamate
(excitatory) and GABa (inhibitory) are exchanged. Neurons can also communicate using electrical
synapses, that use electrical current.

49
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Figure 5.1: Representation of the membrane electrical potential of a neuron. The
neuron requires stimuli above a certain minimum threshold in order to fire. Repro-
duced from the Wikimedia Commons file “File:Action potential.svg”. Available at
http://commons.wikimedia.org/wiki/File:Action potential.svg

Many realistic models of neuronal dynamics exist, such as the Hodgkin–Huxley

model[86]. There are also models for the generation of realistic neural networks,

for instance NETMORPH[87] and CX3D[88]. These models, however, are generally

complex and include many experimental parameters. Our approach, here and in the

next chapter, is to develop toy models and study which aspects of network dynamics

and topology we can control using simple rules and a minimal number of parameters.

The neuron properties described above make the Random Threshold Network

studied in Chapter 3 a good starting point to model neuronal dynamics. For com-

pleteness, let us define the dynamics used in the model. Consider a directed network

with n randomly connected nodes and average degree K. Each existing link from

node j to node i is assigned a weight wij ∈ {1,−1}, and the dynamical state of each

node is given by a Boolean variable σi(t) ∈ {0, 1}. The state σi(t + 1) of node i at
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time t+ 1 is then given by

σi(t+ 1) =

1 , if
∑n

j=1wijσj(t) > h

0 , if
∑n

j=1wijσj(t) ≤ h
(5.1)

where h is a threshold parameter. The control parameter of the topology is the

fraction of positive links F+, calculated as

F+ =
∑
i,j

sgn(wij + 1)�
∑
i,j

|wij| (5.2)

The dynamics starts with an initial condition ~σ(0) = {σ1(0), σ2(0), ..., σn(0)} and is

updated for each node in parallel afterwards. We are interested mainly in the net-

work collective state, measured by the fraction of active nodes A(t) = n−1
∑

i σi(t).

As discussed in Chapter 3, F+ plays a major role in the dynamics of RTNs. Our

algorithm will take advantage of this dependence in order to control the activity of

the network. The average activity of node i is defined as

〈σi〉 =
1

τ

t=t0+τ∑
t=t0

σi(t) (5.3)

where τ is a time-scale parameter and t0 is a transient time parameter. In the adap-

tive process, each 〈σi〉 is compared to a parameter αi and changes its connectivity

according to a certain set of rules. The important question is which set of rules,

combined with a specific distribution of αi, can produce a certain topology and net-

work activity. In other words, the problem amounts to explore the class of adaptive

threshold network with local, activity-based topological evolution. Here we take a

simple realization of the mechanism with αi = α for all i, and the following rules:

if 〈σi〉 > α the node loses a positive in-link (wij > 0), and loses a negative in-link

otherwise. In terms of an algorithm, we have:

1. At t = 0 activate a fraction A(0) of the network nodes.

2. Run the dynamics for t0 + τ time steps, and choose a node i.

3. Calculate the node’s average activity 〈σi〉. If 〈σi〉 > α, remove a random

positive in-link of i. Otherwise remove a random negative in-link. If there is

no suitable link for removal, choose another i.

4. Iterate from step 2.
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The above algorithm obviously can only run a finite number of cycles. If we start

from a fully connected network with n nodes, after at most n(n − 1) cycles the

network will be void of links. We can control the average degree K of the network

by running the algorithm an appropriate number of cycles. The algorithm will be run

for τcycle = n (K0 −K) cycles, where K0 is the initial average degree of the network.

The choices of t0 and τ are not critical, and in fact after the initial activation

(t = 0) t0 plays no part at all. We therefore have an adaptive network with only

two important parameters: the activity parameter α and the average degree K. In

Fig. 5.2 we have a schematic representation of the algorithm.

Figure 5.2: Schematic representation of the adaptive algorithm. A node i loses a
positive in-link wij if its average activity 〈σi〉 is higher than α. Otherwise, i loses a
negative in-link.

5.2 Simulation results

The idea behind these rules is to regulate network activity: the removal of an in-

hibitory in-link makes the node more likely to activate, and the removal of an ex-

citatory in-link suppresses node activity. Therefore, the rules drive 〈σi〉 → α, and

require a highly connected initial network. The question is then if this adaptation

produces a network with stable global dynamics (like the random network) or in a

chaotic state. In Fig. 5.3 we have the results for a n = 1024 fully connected initial

network, and varying initial positive link fraction F+ (0) and evolutionary parameter

α. We use A (0) = 0.1 as initial active network fraction.
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Figure 5.3: Network activity for initial F+(0) ∈ {0.1, 0.5, 0.9} and α ∈ {0.25, 0.75}.
Each point is the average value of A(t) during the cycle of t0 + τ time steps. (top)
Corresponding evolution in the parameter space. The arrows indicate the direction
of the evolution. (bottom) Other parameters are h = 0, n = 1024, and A(0) = 0.1.

The evolution robustly drives the network towards a state where A∞ = α. There

is a strong resemblance between the path the evolution follows in the A(t) = α

phase (Fig. 5.3, bottom) and the activity curves2 in the RTN parameter space

(Fig. 3.2). This suggests the topology of the evolved network is at least similar

to that of a random network. Our simple adaptive rule is therefore capable of

controlling an important aspect of threshold networks, namely the average activity

A∞. By running the algorithm for τcycle evolutionary steps we are also able to set

the network’s average degree, given by K = K0 − τcycle/n. This is done with only

two important parameters and for a vast array of initial networks, provided that

2Defined as the curves in Fig. 3.2 with a fixed A∞.
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they are sufficiently dense.

We now extend the model to various αi within the same network. This tests the

robustness of the algorithm, and answers the question whether the entire network

needs to be at the same A∞ in order for the dynamics to be stable. In Fig. 5.4

we show the network activity A(t)i for all the groups with αi ∈ {0, 0.25, 0.75, 1}.
The evolution still drives the network towards A(t → ∞)i = αi. This means the

algorithm is able to control the activity of individual groups within the network,

and not only of the global network state.

Figure 5.4: Network activity for many αi ∈ {0, 0.25, 0.75, 1} in the same network,
with n = 1000, F+(0) = 0.5, K0 = 200 and K = 50.

5.3 Spatial embedding

An important aspect of many real-world networks is that they are embedded in space.

In brain networks, in particular, spatial embedding is a very important constraint

because there is a higher energy expenditure in forming and maintaining long range

synapses[62]. Other examples where space is relevant include power grid networks

and epidemiological networks[89].

Adaptive network models with spatial constraints are comparatively rare. They

usually have a richer and more complicated dynamics, making analysis more dif-

ficult. As the model described in Section 5.1 is relatively simple, we can attempt

to put it into space and study its emerging properties. To do so we distribute the

nodes randomly in a 2D space, assigning coordinates (xi,yi) for every node i. This
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choice is for simplicity: the nodes can also be put into a lattice or another specific

configuration without noticeable changes to the results. The adaptive algorithm is

then modified in the following way: when an in-link of i is removed, instead of ran-

domly, the selection of wij follows a probability P rem
i (j). This probability is given

by

P rem
i (j) ∼

(
dij

di,max

)β
(5.4)

where dij is the Euclidean distance between neighbors i and j, di,max = max{di,j}nj=1

is the largest distance to a neighbor and β ≥ 0 is a distance parameter. In other

words, the algorithm favors the removal of long range links. The reasoning is that

in most applications there is a higher wiring cost associated with larger distances

between the nodes. The parameter β mediates how biased this selection is: for

β = 0 we recover the out-of-space case, whereas for β → ∞ we always remove the

link from the farthest neighbor.

We are then interested whether the spatial adaptive algorithm maintain the

A∞ = α result from Section 5.2, and if the evolved network has any interesting

topological property. In Fig. 5.5 we have the topological evolution comparing the

random (β = 0) and spatial network (β = 10) cases for α = 0.8. We choose a low

degree K = 10 in order to accentuate any possible difference between the cases. If no

difference is found it is unlikely for it to appear for higher K. The spatial constraint

does not inhibit the evolution towards A∞ = α or increase the fluctuations around

it. In other words, the spatial embedding does not really affect the dynamics of the

evolved network. The important result here is that they are compatible, which is

caused by the robustness of the RTN dynamics. A variant of this spatial embedding

rule (Eq. 5.4) will play a larger role in our other model in Chapter 6.
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Figure 5.5: Topological evolution for a network without spatial constraints (left) and
with spatial constraints (right). The parameters are α = 0.8, n = 1000, K0 = 100
and K = 10.

In many networks the nodes are organized in groups, specially in spatial networks.

In order to investigate the communities in the evolved network we will use the

modularity Q, clustering coefficient C and average path length L. These measures

were defined in Chapter 2. Our interest in Q comes from the fact that many real-

world networks have been shown to possess a modular structure. In particular,

the (hierarchical) modular structure of the human brain is considered essential for

its functionality[62]. In order to understand the results from these metrics they

must be compared to the results from a random network. What exactly constitutes

a random network varies from case to case. Here we take it to be a randomized

version of the original network with the same in and out-degree distribution, in the

so-called configuration model.

In Fig. 5.6 we show the topology of an evolved network, with network measures

for the network and its randomized version. The modularity Q of the evolved net-

work is very high, but more importantly, it is higher than the one of the randomized

network. The evolved network is also a small-world network with high clustering, as

C/Cr = 4 but 〈L〉/〈L〉R = 1.16. This is similar to the result from the Watts-Strogatz

model from Section 2.4, but the evolved network is also modular.
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Figure 5.6: Evolved topology of a network and measures of it. The color of each
node corresponds to its assigned module. The parameters are n = 1000, α = 0.8,
β = 10 and K = 8.35.

We are interested in how these measures scale as a function of β. In Fig. 5.7 we

show Q, C and L for β ∈ [0, 10]. As β increases the network becomes increasingly

modular, saturating around β = 10. The modularity for the randomized network

is stable at around QR ≈ 0.2, showing that Q is really a feature of the topological

structure and not of the degree distribution. It is important to note that this happens

for a small number (< 10) of communities. Our algorithm is therefore able to control

the modularity of the network with only one parameter. The behaviors for C and

L are similar. As β increases the relative clustering C(β)/C(0) increases, while the

relative average path length L(β)/L(0) remains stable. This is an interesting result

because brain networks are known to be both modular and small-world[90].
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Figure 5.7: Modularity Q for the evolved and randomized networks (left) and rel-
ative average path length L(β)/L(0) and clustering C(β)/C(0) (right). The other
parameters are n = 1000, α = 0.1 and K = 10.

In Chapter 3 we studied the dynamics of random threshold networks, and devel-

oped a mean-field approximation to generate RTNs with specific activity A∞. One

could question the usefulness of the model developed here, considering the availabil-

ity of a simpler method to generate networks with a specific A∞. To begin with,

the adaptive algorithm is capable of evolving very different initial networks towards

A∞ = α, instead of using a network with finely-tuned parameters K and F+. The

adaptive algorithm is also able to control the activity of individual groups, coexisting

within the same network as seen in Fig. 5.4.

There are also differences in the two models regarding the frequency distribution

of activity. To explain these differences, let us define the standard deviation of the

active fraction as ∆1 =
√∑τ

t=1 (A(t)− A∞)2 /τ , and the standard deviation of 〈σi〉

as ∆2 =
√∑n

i=1 (〈σi〉 − A∞)2 /n. The evolved network was generated using our

algorithm with a single αi = α. The ER network was generated by using the mean-

field approximation to find the K and F+ necessary for A∞ = α. We see that ∆1

measures the fluctuations of A(t), and ∆2 measures the heterogeneity of activity

between nodes. In Fig. 5.8 we compare the evolved and Erdos-Rényi networks

for these two measures. We see that the evolved network is less stable regarding

the active fraction A(t), with a higher deviation from A∞. At the same time, the

standard deviation of 〈σi〉 is much lower in the evolved network. This means the

evolved network has a much more homogeneous distribution of activity than the

ER network. Therefore, the most useful model (adaptive or ER) depends on which

aspect of network dynamics one wants to emphasize.
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Figure 5.8: Standard deviations of A(t) (left) and 〈σi〉 (right) for the evolved and
Erdos-Rényi networks with the same activity, as a function of α. Parameters are
n = 500, K = 20 and K0 = 100 for the evolved network.

5.4 Summary

In this Chapter we developed an adaptive network capable of evolving an initial

dense network to a certain activity A∞ = α. Our base adaptation algorithm (Section

5.1) is able to control the average activity of the network or groups of nodes in the

network (Section 5.2). By running the algorithm a certain number of times τcycle,

we are also able to set the evolved network’s degree K. The algorithm is then

extended to spatial networks, where by adding another parameter β we are able to

control the modular and small-world properties of the network. Our final model then

possesses three relevant parameters, each directly linked to an important property

of the evolved network:

• The parameter α controls the average activity A∞ = α.

• The parameter τcycle gives the evolved network’s degree K = K0 − τcycle/n.

• The parameter β controls how modular and clustered the evolved network is,

while still being a small-world network.

We consider this a small number of parameters for a model of a spatial, adaptive net-

work. The model can be used to generate threshold networks with specific features.

This can be a useful tool for modeling large-scale networks, for instance genetic

regulatory networks[52] and neural networks.
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6
A Model with Controllable Topology

from External Inputs

6.1 Motivation and model definition

In this chapter we will describe a model where external inputs are used in order to

influence the topology of the network. While the model in Chapter 6 was inspired by

the synaptic pruning process, the model in this chapter is inspired by the synaptic

growth in the brain. Newborn babies experience an explosive growth in density of

synapses during the first years after birth, as seen in Fig. 6.1. Meanwhile, as already

mentioned, many experiments report a mode of activity in the form of avalanches

of activity in the brain[81, 82, 83].

Figure 6.1: Density of synapses in a portion of the human brain. Samples from 21
different brains. Reproduced from [7].
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Our goal is to develop an adaptive model where the network connectivity grows

from a network without links, and study how can we control its topology and dynam-

ics. In order to influence this growth we will use external inputs. These inputs can

be linked to stimuli from the environment in the developing brain. Stimuli during

the synaptic growth is considered essential for the development of the brain[91]. In a

famous experiment, Hubel & Wiesel[92] deprived newborn kittens of light in one eye

for the first three months of life. This induced blindness in that particular eye on the

kittens. Similar results where later obtained in rhesus monkeys[93]. These results

are caused by the lack of development of synapses in the visual cortex. This lack of

synaptic growth has been linked to the absence of stimuli during the developmental

phase of the subjects.

For the node dynamics, we will use the Random Threshold Network dynam-

ics explored in Chapter 3. Since we are interested in avalanches of activity, we

will modify the RTN dynamics by increasing the threshold after each activation.

This guarantees the eventual death of the dynamics in the network, characterizing

an avalanche. The dynamics is the following: each node has a binary dynamical

state σi(t) ∈ {0, 1} and an individual activation threshold Θi, with a deterministic

threshold update rule given by

σi(t+ 1) =

1 ,if
∑

j wijAj(t) > Θi(t)

0 ,if
∑

j wijAj(t) ≤ Θi(t)
(6.1)

The threshold Θi is also a dynamical variable, with the following dynamics

Θi(t+ 1) = Θ0 +
t∑

t′=0

σi(t
′) (6.2)

where Θ0 is an initial threshold value. This increase of the threshold Θi after an

activation has a biological motivation. Chemical synapses use neurotransmitters to

transfer signal, which can deplete and impede the neuron from firing. Depletion of

neurotransmitters has been linked to alertness and sleep deprivation in humans[94].

At t = 0 the network receives an external input in the form of spontaneous

activation of a fraction nA of its nodes, and each node is then updated in parallel

following Eqs. 6.1 and 6.2. According to Eq. 6.2, whenever a node gets activated

its threshold Θi will go up by one. This is enough to eventually cease activity on

the network. Model variants that maintain the increasing of Θi after activations

produce very similar results, so the precise form of Eq. 6.2 is not crucial. The two
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main dynamical observables are the fraction of active nodes A(t) = n−1
∑

i σi(t),

and the average threshold Θ(t) = n−1
∑

i Θi(t). Note that the network dynamics

(after initial activation) is parameter-less and deterministic.

The topological evolution is based on the Pearson correlation (Eq. 4.8) between

a node i at time t and its inputs j ∈ {k |wik 6= 0} at time t − 1, and the repeated

activation of the network following a certain fixed pattern. The pattern is charac-

terized by the fraction of nodes it activates, nA = n−1
∑

iAi(0). The network starts

without links, and the adaptive algorithm at each step has the following algorithm:

1. Activate a fraction nA of the network, and run the dynamics according to Eqs.

6.1 and 6.2.

2. After the avalanche ends, choose a node i and calculate the average Pearson

correlation between it and its inputs j ∈ {k |wik 6= 0}.

3. With equal probability, add a random in-link wix = ±1 to i or remove an

existing in-link from i.

4. Run the dynamics again with the same pattern, and calculate the new average

Pearson correlation of i.

5. If the rewiring caused a drop in average correlation, revert the change. Oth-

erwise keep it. Iterate from step 1.

Topological and dynamical variables are constantly measured in order to charac-

terize the network state. Since the dynamics starts with an external input, we are

interested in the effect of a fixed input pattern versus a random input pattern. In

Fig. 6.2 we have a schematic representation of the adaptive algorithm of the model.

Figure 6.2: Schematic representation of the adaptive algorithm.

Notice the similarity between the adaptive algorithm here and the one from

the model by Rybarsch & Bornholdt[75]. The model in this Chapter was actually

inspired by the model by Rybarsch & Bornholdt, and started out as an effort to
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simplify the mentioned model. To do this we changed the dynamics, using a deter-

ministic rule instead of a stochastic one and removing a parameter. This allowed us

to add spatial embedding to the model, which will be explored in Section 6.3. In

the next Section we describe the results from the model without spatial embedding.

6.2 Activity avalanches from external inputs

If we keep a fixed input pattern, a network structure where correlation between

neighbors is maximal for that specific input emerges. This usually occurs for one

neighbor, since with more links it is harder to properly synchronize activity and the

correlation drops. In Fig. 6.3 we have the results for such case with nA = 0.01 (i.e.

1% of input nodes). Since the network starts without links every node is equivalent,

and the choice of input nodes is not relevant. The average branching parameter λ

and average Pearson correlation C (as defined in Section 4.3) are then calculated

over τ = 20 time steps. The particular τ used affects the absolute values of λ and

C, but should not affect how they change during the evolution.

Figure 6.3: Evolution of a network with a fixed input pattern. Topological measures
and average activity (left) and dynamical measures (right). Parameters are n =
1024, nA = 0.01 and Θ0 = 0.

After a period of initial growth where the connectivity K reaches a maximum,

connectivity drops and eventually stabilizes around KC = 1. This can be explained

by the initial correlation. Since C is initially low, every change is accepted and

connectivity explodes1. As C increases, the rewiring becomes more selective. Con-

1While link addition and removal occur with equal probability, the link needs to exist to be
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nectivity drops, and almost all inhibitory links are removed. In terms of dynamics,

both correlation and the branching parameter stabilize at a high value. The aver-

age threshold Θ at the end of the dynamics stabilizes around two, meaning that on

average every node gets activated twice during the avalanche.

In order to focus on the networks response to external stimuli we used a deter-

ministic dynamics without perturbations. It is however interesting to study whether

the evolved network has any critical properties regarding random perturbations. To

study this we measure the length T (in time steps) and size L (in number of nodes

activated) of avalanches caused by activation of a random node. The network used

has n = 1024 and was evolved with a nA = 0.001 input pattern for 106 time steps.

Figure 6.4: Avalanche probability distribution from random perturbations on an
evolved network. Data from 106 avalanches. (left) Derrida plot of the network
avalanches. Data from 104 avalanches, perturbed at different time steps (right).
The network was evolved with n = 1024, nA = 10−3 and Θ0 = 0.

The results in Fig. 6.4 (left) show that the avalanches follow a power-law with

an exponential cutoff. The best-fit exponent values are compatible with the ones

predicted for a critical network. Power-laws don’t necessarily imply Criticality, how-

ever. In order to confirm that the network is critical we can make a Derrida plot

of the dynamics, as defined in Section 3.5. We see in Fig. 6.4 (right) that the re-

sponse to perturbations follows the bissection H(1) = H(0). The match between

the data and the bisection confirms the critical nature of the network regarding ran-

dom perturbations. It is important to note that the critical state is sometimes not

found by the evolution. In these cases, the connectivity stabilizes at a higher value

removed. This creates a bias towards network growth.
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between one and two and the network possesses an overcritical response to random

perturbation.

All activity comes from an external input pattern. Therefore it is useful to

analyze the network response to noisy patterns, such as partial input patterns. We

calculate the Hamming distance H(Th) between the network with full input and with

various degrees of partial inputs, at time t = Th. In order to get more meaningful

results, a network with a higher pattern size nA = 0.1 is used. The results are shown

in Fig. 6.5.

Figure 6.5: Hamming distance for the original network and randomized networks for
t = Th ∈ {1, 5} (left) and Hamming distance divided by the network activity with
full input at t = Th (right). Each point is an average of 104 runs for the original
network and 3.103 runs for each of the 20 random networks.

In order to have a measure of robustness, the network is compared against an

ensemble of random networks with the same (in and out) degree distribution. The

evolved network generates a configuration considerably closer (lower H(Th)) to the

one with full input than the random networks. This is especially true for small

perturbations (≈ 10% of removed input) . It is important to note that the results

in Fig. 6.5 are for the input pattern used to evolve the network. If instead a

random pattern is used, the results from the evolved and random networks are

indistinguishable. This shows that the behavior in Fig. 6.5 is a response to a

specific pattern, and not a general characteristic of the network structure. Also,

if a random (alternating) pattern is used to evolve the network an overcritical and

low-correlation topology appears.
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6.3 Controlling the topology of a spatial network

The relative simplicity of the model described in Sections 6.1 and 6.2 allows us to

include spatial embedding to it. For that, we will use a rule similar to the one in

Section 5.3, but that also accounts for link inclusion. Each node i is associated with

coordinates (xi, yi), randomly chosen between 0 and 1.We maintain the algorithm

from Section 6.1, but include the following change: if a link is to be removed from

node i, the selection of which neighbor j will have the link removed is performed

with probability P rem
i (j) given by

P rem
i (j) ∼

(
dij

di,max

)β
(6.3)

where dij =
√

(xi − xj)2 + (yi − yj)2 is the Euclidean distance between i and j. The

distance is divided by the largest distance di,max to a neighbor2. The bias towards

long-range removal is done by the parameter β. Setting β = 0 recovers the out-

of-space model, and β → ∞ results in the algorithm always choosing the farthest

neighbor. If a link to i is to be added by the adaptive algorithm, the selection of a

non-neighbor j is done with probability P add
i (j) given by

P add
i (j) ∼

(
1− dij

di,max

)β
(6.4)

which is similar to Eq. 6.3. It introduces a bias towards the creation of close-range

links, with the same parameter β. We also make the following modification: instead

of just not decreasing the correlation, now a change must increase the correlation

in order to be accepted. This is done in order to remove the explosive growth phase

of Fig. 6.3 (left), which allows us to better control the formation of the topology.

The embedding of the network in 2D space facilitates our visualization of the

evolving topology and dynamics. Since our algorithm uses an initial input to start

the dynamics, it also allows us to study the response of the network regarding

different activation regions and patterns. Since each node has a different position

(xi, yi), they are not equivalent in the beginning. Therefore, the choice of nodes for

initial activation matters. This contrasts with the out-of-space model, where each

node is equivalent at t = 0 and the only relevant parameter is the fraction of chosen

nodes nA.

2This done for simulation purposes. For high β the value of dβij can go below the numerical
precision of the computer, generating rounding errors and invalidating the simulation
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In Fig. 6.6 we have the results of a network embedded. The evolution was done

by activating a small number of nodes at the center (i.e., coordinates(0.5, 0.5)) of

the plane. The color of the nodes corresponds to a community division found using

a modularity maximization method 3.

Figure 6.6: Example of a network evolved with spatial embedding. The network was
evolved by activating a small number of nodes at the center. The node colors corre-
sponds to the community division found by maximizing the modularity. Parameters
are n = 1000, Θ = 1 and β = 10.

We analyzed the modularity Q, clustering coefficient C and average path length

L of the network. Similar to Chapter 5, we compare the results to an ensemble of

randomized networks created by shuffling the links of the evolved network. Below

we summarize the results.

• Modularity: Q = 0.716 with 10 communities (evolved network), and Qr =

0.272 with an average of 4.6 communities (randomized networks).

• Clustering coefficient C = 0.112 (evolved network), and Cr = 0.007 (random-

ized network)

3Specifically, we used the Louvain algorithm described in Section 2.3 followed by a finetune
algorithm[95].
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• Path length L = 6.26 (evolved network), and Lr = 4.07 (randomized network)

Similar to the results from Section 5.3, we find a highly modular community struc-

ture. Compared to the randomized network, we find a much higher clustering with

a similar average path length. We therefore have a small-world topology4 with high

clustering, similar to the model in Chapter 5 and to the Watts-Strogatz model[14].

In order to visualize how the dynamics spreads, in Fig. 6.7 we show the active

nodes at different time steps. We observe a concentric wave of activity spreading

from the nodes activated by external input. The wave eventually reaches the borders

of our system, terminating the dynamics. This is a direct result of the spatial

constraints - if β = 0 a node can activate another anywhere in the network and no

such pattern of activity is seen.

Figure 6.7: Dynamics of the evolved network. The red points represent activated
nodes, and the black points represent inactive nodes. Dynamical states at t = 1,
showing the nodes with external input (left), and at t = 8, showing how the activity
spreads through the network.

We can also study how the evolved network changes with varying β. This is

shown in Fig. 6.8, for a variety of topological and dynamical measures. We see that

both average degree K and avalanche length T increase (Fig. 6.8, upper left). The

average correlation stays relatively constant, while both the average final threshold

Θ = 〈Θi(T )〉 and average activity Ā = T−1
∑T

t=1A(t) increase with β (Fig. 6.8,

upper right). These results indicate that the avalanches both take longer and result

in higher activity for higher β. We also see that the relative clustering C/Cr increases

dramatically, whereas the relative path length L/Lr stays constant5 (Fig. 6.8, lower

4Rigorously, we would also have to show that L scales as L v ln(n) or slower.
5We use here the same nomenclature as earlier, where Cr and Lr are the clustering and path

length of randomized versions of the evolved network.
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left). The modularity Q of the evolved network increases, stabilizing at Q ≈ 0.7 for

high β. At the same time, the modularity of the randomized network decreases with

β, which can be attributed to the higher degree (Fig. 6.8, lower right).

Figure 6.8: Network evolution as a function of β. In the upper figures we have
the degree K and avalanche length (upper left), and average correlation C, average
activity during the avalanche and average final Θ = 〈Θi〉 (upper right). In the lower
figures we have the relative clustering C/Cr and relative path length L/Lr (lower
left), and the modularity Q for the evolved and randomized networks (lower right).
Parameters are n = 300, Θ0 = 1 and 6 initial input nodes (nA = 0.02).

Regarding Criticality, preliminary results indicate that fine-tuning of β can drive

the evolving network towards a critical state. This is seen in Fig. 6.9, where we have
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the Derrida plot for an ensemble of evolved networks. A higher β implicates in a

stronger response to perturbation. In the networks with n = 500 and nA = 0.012 the

response is critical with β = 1.75, being undercritical for a lower β and overcritical

for higher β (Fig. 6.9, right). At the same time, for networks evolved with n = 300

and nA = 0.02 the response still increases with β, but it is always undercritical. The

mechanism that leads to these two behaviors remains to be explored. Regardless of

this, we see that β is able to heavily influence both the dynamics and topology of

the network.

Figure 6.9: Derrida plot of the evolved network, for various β. Both networks have
Θ0 = 1. Results for an ensemble of networks with n = 300 and nA = 0.02 (left) and
n = 512 and nA = 0.012 (right).

We can further extend our model by implementing different patterns for the

external input. This is done by alternating between two or more patterns instead

of keeping a fixed pattern at each avalanche. In Fig. 6.10 we have the results for

a network evolved with three alternating patterns. The input patterns are made of

two nodes close to coordinates (0, 0), (1, 0) and (0.5, 1). We see that the alternating

patterns create three distinct modules, each corresponding to the input region of a

pattern. This shows that the algorithm is able to control the formation of distinct

topologies in the network, even with nodes spread randomly in space.
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Figure 6.10: Topology of a network evolved with three input regions at
coordinates(0, 0), (1, 0) and (0.5, 1). The colors represent the community detection
found by a modularity maximization method. Parameters are n = 1000, Θ0 = 1
and nA = 0.002 for each site.

It is also useful to analyze how this topology grows during the evolution of the

network. In Fig. 6.11 we show three snapshots of the topology at different stages

of the evolution. We clearly see that the network grows from the input regions, and

forms a very heterogeneous topology with few very high degree nodes and a large

number of low-degree nodes.

Figure 6.11: Topology of the evolved network with three input patterns at three
different stages. The temperature (color) represents the degree of a node. Topology
at t = 1000 (left), t = 3000 (center) and t = 6000 (right).

Besides a complex topology, the evolved network also possessess another hallmark

of adaptive networks, namely complex dynamics. To show this, we can plot the
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avalanches from each of the patterns and compare how they spread. We compare

the dynamics at three different time steps: at t = 0, at the time when it reaches

its maximum activity, and at t = 9. In Fig. 6.12 we have the we results from the

avalanche starting from the input region at (0.5, 1).

Figure 6.12: Avalanche dynamics of the evolved network starting from the input site
at (0.5, 1). Dynamics at t = 1 (left), during the maximum activity at t = 6 (center)
and at t = 9 (right).

We see that the dynamics remains largely contained within the community gen-

erated by the pattern. In Fig. 6.13 we have the avalanche starting from the input

region at (1, 0).

Figure 6.13: Dynamics of the evolved network starting from the input site at (1, 0).
Dynamics at t = 1 (left), during the maximum activity at t = 7 (center) and at
t = 9 (right).

We also see that the dynamics stays contained within the module generated by

the pattern. We also see that the total activity starting from this pattern is lower.
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Lastly, in Fig. 6.14 we have the avalanches starting from the pattern with the input

region at (0, 0).

Figure 6.14: Avalanche dynamics of the evolved network starting from the input site
at (0, 0). Dynamics at t = 1 (left), during the maximum activity at t = 6 (center)
and at t = 9 (right).

We see that the dynamics started from (0, 0) is able to activate a second module

of the network. This behavior was a consequence of the interplay between dynamics

and topology, and choice of input regions. It is important to note that all of these

results were obtained with simple alternating patterns and nodes spread randomly

in space. With more clever patterns, and by arranging the positions of the nodes,

we speculate that a much more complete control of the topology is possible. This

in turn can generate more complex dynamics, all while maintaining the relatively

simple adaptive algorithm and dynamics, and minimal number of parameters.

6.4 Summary

In this chapter we proposed a model where avalanches driven by external inputs

were used to control the evolution of a network. Without spatial constraints, the

evolved networks display some interesting properties. They are adaptive networks

with deterministic dynamics and a minimal number of parameters, of which only the

base threshold Θ0 is critical. The evolved networks generally display Self-Organized

Criticality (Fig. 6.4), and are also more resilient to partial input than random

network (Fig. 6.5).

When put in space, a more interesting picture emerges. With only one new

parameter β we are able to control various topological and dynamical properties

of the network (Fig. 6.8). These include the degree K, modularity Q and small-

world properties. Preliminar results indicate that Criticality may also be possible
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with fine-tuning of β (Fig. 6.9). By introducing alternating patterns, we are able

to go further and control the formation of modules in the network (Fig. 6.10).

This in turn can generate interesting dynamics, as observed in Figs. 6.12-6.14.

Concluding, we consider this a promising work-in-progress model, where a relatively

simple adaptive algorithm and a minimal number of parameters were already able

to generate interesting dynamics and control the topology.
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7
Conclusion

In this work we studied the structure and dynamics of complex networks. The

motivation of this study was the search for a simple dynamics that was also capable

of describing the neuron or large regions of neurons. We were particularly interested

in developing a dynamics of neural networks describing cortical brain areas that

could emulate their behavior at early ages when synaptic growth and pruning takes

place.

Our first object of investigation was the Random Threshold Nework (RTN)

model. These networks have a simple dynamics adequated to our goals. More

specifically, the dynamics can be controled by the balance between excitatory and

inhibitory links in the network. We also developed a mean-field approximation to

our dynamics. This approximation builds upon previous works by being more simple

and using functions available in Algebra packages such as Mathematica(R). Thus,

our approximation facilitates the generation of Random Threshold Networks with

specific activity A∞ and degree K. We also show that A∞ goes through a first-order

phase transition.

As a second step, based on the RTNs, we considered two adaptive models for

the networks. With our first adaptive model we are able to control the dynamics of

a network with very simple rules. This model aimed at a simple description of the

synaptic pruning process in the human brain. Our goal while developing it was to

keep it as simple as possible, while at the same time trying to maintain it compatible

with our knowledge of the biological neural network. We also proposed a simple rule

of pruning in spatial networks, and show that this rule is able to generate modular

topologies. It also generates small-world topologies with high-clustering, similar to

the WS model. These are features present in brain networks, so it is interesting

that we are able to obtain and control them with a simple pruning rule and one

77
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parameter β.

Our second adaptive model dealt with controlling the topology of a network and

its avalanche dynamics. It aimed at a simple description of the synaptic growth of

the brain during infancy, as opposed to the synaptic pruning. Using a correlation

maximization algorithm, we are able to generate a self-organized critical network.

The topology is also somewhat robust against faulty input after being evolved. Our

model uses external inputs to generate activity, which is similar to the influence

of stimuli from the environment on the brain. We then extended the model by

embedding the network in a 2D space. By using a simple distance-based rule, we

were able to control the formation of modules in the network. We showed that this

complex topology can also give rise to interesting dynamics in the network.

From our study, we conclude that Random Threshold Networks are very robust

in terms of their dynamics. Adaptive models based on RTN dynamics benefit from

this robustness. These models can alter the network in ways that could throw other

less robust dynamical models into a chaotic state. We also conclude that simple

rules, coupled with a minimal number of parameters, are able to create interesting

and non-linear characteristics. Most importantly, many of these characteristics are

seen in real-world networks.

The models developed in this work are intentionally minimal, and can be ex-

tended in many directions. The model with ceaseless dynamics (Chapter 5) can

be altered to preserve the degree distribution of the base network, or to generate

networks with specific degree distribution. For instance, scale-free networks can be

generated by using a preferential depletion rule for link removal[96]. This model

can also be extended with features like link addition to balance the removal, and

deletion of nodes. These features could for instance drive the network towards a

stable topology, where the network does not loose more links.

Our second model also offers many possibilities for further extensions. We could

explore different input patterns, and the effect of different spatial constraints. For

instance, the effect of embedding the network in 3D space. We could change our

algorithm to encourage the formation of inhibitory links, which could dramatically

change the dynamics. However, it is not clear if it is possible control this formation

using simple rules or input patterns.

Brain modeling is a field of its own, and there are many big projects that aim to

model and study the human brain[97, 98, 99]. These projects tend to involve very

complicated and realistic models, that are run on supercomputers[100]. We believe

that one of the most important contributions of this work is to show that some
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basic properties of neural networks, such as average activity and modular topology,

can be reproduced by simple models. These simple models are useful to acquire an

understanding of the general principles in the large networks and we hope will be

useful as a complementary tool in the investigation of real structures in the human

brain neural network.
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[74] Stefan Bornholdt and Torsten Röhl. Self-organized critical neural networks.

Physical Review E, 67(6):066118, June 2003.

[75] Matthias Rybarsch and Stefan Bornholdt. Avalanches in self-organized critical

neural networks: a minimal model for the neural SOC universality class. PloS

one, 9(4):e93090, January 2014.

[76] Alessandro Vespignani and Stefano Zapperi. How self-organized criticality

works: A unified mean-field picture. Physical Review E, 57(6):6345–6362,

June 1998.

[77] Theodore E. Harris. The Theory of Branching Processes. Dover, New York,

1989.

[78] Christel Kamp and Stefan Bornholdt. Critical percolation in self-organized

media: A case study on random directed networks. page 4, October 2002.

[79] Daniel B. Larremore, Woodrow L. Shew, Edward Ott, Francesco Sorrentino,

and Juan G. Restrepo. Inhibition Causes Ceaseless Dynamics in Networks of

Excitable Nodes. Physical Review Letters, 112(13):138103, April 2014.

[80] P. Bak and Maya Paczuski. Complexity, contingency, and criticality. Proceed-

ings of the National Academy of Sciences, 92(15):6689–6696, July 1995.



88 BIBLIOGRAPHY

[81] John M Beggs and Dietmar Plenz. Neuronal avalanches in neocortical cir-

cuits. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 23(35):11167–77, December 2003.

[82] Elakkat D Gireesh and Dietmar Plenz. Neuronal avalanches organize as nested

theta- and beta/gamma-oscillations during development of cortical layer 2/3.

Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 105(21):7576–81, May 2008.

[83] Thomas Petermann, Tara C Thiagarajan, Mikhail a Lebedev, Miguel a L

Nicolelis, Dante R Chialvo, and Dietmar Plenz. Spontaneous cortical activity

in awake monkeys composed of neuronal avalanches. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 106(37):15921–6,

September 2009.

[84] Ole Paulsen. Natural patterns of activity and long-term synaptic plasticity.

Current Opinion in Neurobiology, 10(2):172–180, April 2000.

[85] Yang Zhan, Rosa C Paolicelli, Francesco Sforazzini, Laetitia Weinhard, Giulia

Bolasco, Francesca Pagani, Alexei L Vyssotski, Angelo Bifone, Alessandro

Gozzi, Davide Ragozzino, and Cornelius T Gross. Deficient neuron-microglia

signaling results in impaired functional brain connectivity and social behavior.

Nature neuroscience, 17(3):400–6, 2014.

[86] A L Hodgkin and A F Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. The Journal of

physiology, 117(4):500–44, August 1952.

[87] Randal a Koene, Betty Tijms, Peter van Hees, Frank Postma, Alexander

de Ridder, Ger J a Ramakers, Jaap van Pelt, and Arjen van Ooyen. NET-

MORPH: a framework for the stochastic generation of large scale neuronal

networks with realistic neuron morphologies. Neuroinformatics, 7(3):195–210,

September 2009.

[88] Frederic Zubler and Rodney Douglas. A framework for modeling the growth

and development of neurons and networks. Frontiers in computational neuro-

science, 3(November):25, January 2009.
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