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A certain degree of inhibition is a common trait of dynamical networks in nature, ranging from
neuronal and biochemical networks, to social and technological networks. We study here the role
of inhibition in a representative dynamical network model, characterizing the dynamics of random
threshold networks with both excitatory and inhibitory links. Varying the fraction of excitatory
links has a strong effect on the network’s population activity and its sensitivity to perturbation. The
average degree K, known to have a strong effect on the dynamics when small, loses its influence on
the dynamics as its value increases. Instead, the strength of inhibition is a determinant of dynamics
and sensitivity here, allowing for criticality only in a specific corridor of inhibition. This criticality
corridor requires that excitation dominates, while the balance region corresponds to maximum
sensitivity to perturbation. We develop mean-field approximations of the population activity and
sensitivity and find that the network dynamics is independent of degree distribution for high K.
In a minimal model of an adaptive threshold network we demonstrate how the dynamics remains
robust against changes in the topology. This adaptive model can be extended in order to generate
networks with a controllable activity distribution and specific topologies.

I. INTRODUCTION

Inhibition is a frequent factor in many real-world net-
works as nodes often have an excitatory, as well as an
inhibitory effect on their neighbors. Actors in a social
network may display affection or animosity towards each
other, while genes may suppress the expression of others
in a gene regulatory network. Notably, an estimate 20%
of the neurons in the brain are inhibitory, and have a key
role in regulating neuronal activity [1–4]. In model sys-
tems, dynamics with inhibition can generate more com-
plex dynamics than their excitation-only counterparts [5].

Another common feature in real-world networks, also
present in the brain, is a topology that evolves with time.
In adaptive networks, feedback loops between network
dynamics and topological evolution can drive the net-
work towards different dynamical states. These can be
critical points of a phase transition [6–8] or dynamical
states not accessible to networks with standard (e.g. lat-
tice or random) topologies [9–12]. To prevent changes
in the topology from resulting in catastrophic failure of
network function, it is important that the network dy-
namics be robust against such changes. The observation
of avalanches of activity in cortical tissue, pointing to-
wards a dynamical state near a phase transition [13–17],
has also sparked renewed interest in models with phase
transitions and mechanisms capable of controlling net-
work evolution.

Random threshold networks (RTNs) have been used
to model a vast array of phenomena [18–23], from neu-
ral networks [24] to gene regulatory networks [25, 26].
While RTNs have been extensively studied, in most mod-
els the links wij between nodes are either always excita-
tory (wij > 0) or wij = ±1 with equal probability. In the
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following we generalize the RTN model to a varying bal-
ance between excitatory and inhibitory links in order to
obtain insights into how inhibition may affect real-world
networks. We use both network simulations (Sec. II)
and analytic methods (Sec. III), and focus on the condi-
tions for criticality and how we can control the network’s
activity and dynamical sensitivity. We also study its ro-
bustness to topological evolution, and how, by evolving
the topology, a higher degree of control of the dynamics
is obtained.

II. DYNAMICS OF RTNS WITH INHIBITION

A. Model definition

Consider a directed network with n randomly con-
nected nodes and average degree K. A weight wij = ±1
is assigned to each existing link from node j to node i.
The dynamical state of each node is represented by a
Boolean variable. The state σi(t + 1) of node i at time
t+ 1 is given by

σi(t+ 1) =

{
1 , if

∑n
j=1 wijσj(t) > h

0 , if
∑n
j=1 wijσj(t) ≤ h

(1)

where h is a threshold parameter. The network collective
state is measured by the fraction of active nodes,

A(t) =
1

n

∑
i

σi(t) (2)

The dynamics is initiated by randomly choosing a frac-
tion of the nodes to be activated at t = 0, A(0). We need
a set of parameters to characterize the relevant topolog-
ical properties of the network. These are the average de-
gree K of the network, and the fraction of positive links
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Figure 1. Parameter space of the dynamics as a function of K and F+. A. Stable activity A∞ for a threshold of h = 0.
B. Same as (A) for h = 1. C. Sensitivity λ for h = 0. The white region corresponds to networks near criticality (λ = 1). D.
Same as (C) for h = 1. Balance (F+ ≈ 0.5) results in maximum sensitivity, while criticality requires more excitation (F+ > 0.5)
for high K. Other parameters are n = 103 and A(0) = 0.9, and each point is the average of 102 simulations.

F+. The link weights wij = ±1 are distributed randomly
in the network, with the constraint that the total fraction
of positive links is F+. Unless otherwise stated, the un-
derlying topology is that of a directed Erdős–Rényi (ER)
network. As we will see, properties such as degree distri-
bution are not critical in the high connectivity regime.

Several variants for the RTNs are possible. Some works
in the literature add a self-regulating state [18, 22] to Eq.
1 given by σi (t+ 1) = σi (t) if

∑n
j=1 wijσj (t) = h. This

new condition can drastically change the dynamics by
adding long-term temporal correlations between the node

states. Note that for non-integer h (and wij = ±1) this
state is not possible, and the model is equivalent to ours.
Our RTN definition with threshold h = 1 is equivalent
to the “biological” RTN variant as defined in [27], par-
ticularly suited for simulating genetic networks. Another
possibility is to update the node states asynchronously
[23] or use other forms of asynchronicity. In order to fo-
cus on the effect of F+ in ensembles of random networks,
we will use the simpler and most common case where all
nodes are updated in parallel according to Eq. 1.
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B. Parameter space

Since the dynamics is deterministic it must eventually
arrive at an attractor. This can be a limit circle of A (t),
with A(t + τ) = A(t) for some τ , or a fixed point A∞,
with A∞ = A (t→∞). The value A∞ = 0 is always a
fixed point of the dynamics, since σi = 0 for all i is an
absorbing state. Szejka et al. [22] showed that for the
specific case of F+ = 0.5 another stable fixed point A∞ >
0 can emerge depending on the relationship between K
and h.

We ran numerical simulations in order to obtain A∞
for the entire range 0 < F+ < 1. In Fig. 1A,B we
plot the fixed point A∞ in the parameter space A∞ =
A∞ (F+,K) for fixed thresholds h ∈ {0, 1}. We ob-
serve a much richer dynamics than in the F+ = 0.5
and F+ = 1 cases. Intuitively, A∞ increases with F+.
However, the interesting aspect is that A∞ can have a
value on a large range, with the crucial parameter be-
ing F+. The dependence on K ∈ [10, 100] is weaker,
with the wider range of F+ with non-frozen dynamics
(i.e., A∞ 6= 0 and 1) happening for lower K. A critical
degree KC is necessary for A∞ > 0, however. As K in-
creases, the non-frozen dynamics becomes more centered
around F+ = 0.5, and in the K →∞ limit only happens
for A∞ (0.5,K →∞) = 0.5. The convergence is slow,
however. As the threshold h increases, the region in the
(F+,K) parameter space with non-frozen dynamics de-
creases. It is important to note that the transition from
A∞ = 0 to A∞ > 0 is not a continuous transition. Very
low activity network states can in principle happen, but
they have a high probability of going to the absorbing
state A(t) = 0 (see Appendix A). Thus, in practice a fi-
nite network has a minimum stable activity AC∞ that it
can sustain, which increases with larger h. In Sec. IIC
we explore AC∞ and other observables that define the dy-
namic range of RTNs.

Another important observable of RTNs is the network
sensitivity λ. The sensitivity is defined as the number of
perturbed states at time t+ 1 after changing the state of
one node at time t, averaged over an ensemble of network
states [18, 22]. For memoryless network dynamics this is
enough to determine how a perturbation will spread over
long timescales. If λ > 1, the network is chaotic and a
perturbation will spread and take over the network. If
λ < 1, the network is ordered and a perturbation will
quickly die out. Finally, if λ = 1, the network is crit-
ical and a perturbation will take a long time to disap-
pear without dominating the dynamics. In Figs. 1C,D
we show the parameter space of λ as a function of F+

and K for h ∈ {0, 1}. In general, λ increases with K and
is highest for networks with F+ ≈ 0.5.

Of particular interest are the regions of criticality
where λ ≈ 1. In Fig. 1C the near-horizontal white line
corresponds to the well known critical point of discrete
dynamical networks for a small critical value of K that
only slightly depends on the, otherwise nearly arbitrary,
degree of inhibition. A main observation of our paper

is the second, almost vertical, white line, indicating a
second region of criticality for almost arbitrary and also
high values of K, given that the fraction of positive links
F+ lies within a narrow, well defined region. Here, the
critical state requires < F+ > 0.5, asymptotically ap-
proaching the balanced state (F+ = 0.5) in the K → ∞
limit. Nevertheless, well-connected finite-sized networks
require more excitation than inhibition to attain critical-
ity. Note also that, while criticality requires < F+ > 0.5,
< F+ ≈ 0.5 results in maximum sensitivity to perturba-
tions (supercriticality).

Comparing the activity and sensitivity plots of Fig 1,
we observe that the critical case is in general possible
for a narrow region in connectivity K with relatively low
activity, and a broad range of K at a higher activity
level (see also Fig. 5B). This latter case, interestingly,
combines conditions which are relevant for information
processing networks: an intermediate activity level and
a critical level of sensitivity. That this is closely corre-
lated to a narrow range of inhibition in our RTN model
may have implications for similar relationships in natural
networks, as in the case of inhibition in the brain.

C. Dynamic range of RTNs

Different combinations of topological and dynamical
parameters can yield different values of A∞. With fixed
h and K there is a critical FC+ = FC+ (K) required for
A∞ > 0, and the corresponding minimum activity AC∞ =
A∞

(
FC+
)
. There is also a critical degree KC = KC (h),

which is the minimum connectivity required for A∞ > 0
with F+ = 1. All of these quantities place boundaries on
the activity of RTNs. IfK < KC , or F < FC+ , no activity
can be maintained by the network. More importantly,
AC∞ is the minimum activity the network can maintain,
and the knowledge of it is necessary for using Eq. 9 to
generate RTNs with desired activity. In Fig. 2 we show
AC∞ , FC+ and KC (inset) for 0 ≤ h < 6. While AC∞
is low for low h, it can be quite high for high h. We
obtain AC∞ = 0.51 for K = 100 and h = 6, meaning more
than half of the network must be active in order for it to
maintain activity with any F+.

It is interesting to explore the range of values A∞ can
take by varying one parameter, as complete control of
all parameters may not be feasible in certain situations.
Lets us define the non-frozen range ∆F+ ofA∞ as ∆F+ =
F2(K,h)− F1(K,h), where F2 is the highest and F1 the
lowest F+that produces non-frozen dynamics (0 < A∞ <
1) for a certain set of (K,h). If there is no 0 < A∞ < 1
possible we set ∆F+ = 0. In Fig. 2C we show ∆F+.
As we increase both K and h the range ∆F+ decreases,
meaning the non-frozen dynamics gets compressed into a
smaller range of values of F+. The dynamic range ∆A∞
(i.e., the range of A∞ the network can have by varying
F+) is given by ∆A∞ = 1 − AC∞. As K increases AC∞
decreases, with the exception of h = 0 and low K. This
means that in order to maintain a high dynamic range it
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Figure 2. Dynamic range as a function of the average
degree K for 0 ≤ h ≤ 6 A. Minimum stable activity AC

∞
that an RTN can sustain. B. Critical FC

+ needed for the net-
work to sustain activity. C. Non-frozen range ∆F+ where the
network produces non-frozen dynamics 0 < A∞ < 1. Inset:
Minimum degree KC needed for sustained activity. Param-
eters are n = 103 and A (0) = 0.95, and each point is the
average of 102 simulations. The color code is the same for all
figures.

is advantageous for the network to be highly connected.

D. Adaptive networks with threshold dynamics

It is interesting to study how the RTN dynamics deals
with an evolving topology. As we will see in Sec. III,
the dynamics is fairly independent on the precise net-

work topology (Fig. 4C), making it a good candidate for
a system that must be stable under changes to the topol-
ogy. In the brain, during development a massive pruning
process removes a large portion of the neuronal synapses
[28]. Inspired by this, we study how a simple link-removal
adaptation rule can shape the dynamics of the network.

The algorithm consists of removing an excitatory in-
link of node i if its average activity Āi is Āi ≥ α, and
removing an inhibitory in-link otherwise. While it can
be expected that the algorithm can drive the individual
node activity towards α, it is not obvious whether it pre-
serves the RTN dynamics or drives it towards a chaotic
state. The algorithm, and its implications, are described
in more detail in Appendix B.

Our simple algorithm consistently drives the global,
stable activity to A∞ → α. (Fig. 3A) for very different
α and initial fraction F 0

+ of excitatory links Thus, it can
be used to evolve a network with thresholding dynamics
towards a certain activity level with only local informa-
tion. A natural extension is to allow different parameters
αi for each node. In Fig. 3B we divide the n = 103 nodes
into 3 groups with α ∈ {0.1, 0.5, 0.9}, and show that the
algorithm can lead to the co-existence of groups with very
different activity rates within the same network.

The adaptive algorithm allows us to control not only
A∞, but the node activity distribution pA(Āi). This is
particularly useful because the RTN dynamics with a
random (ER) network results in a bimodal pA(Āi). In
other words, a high number of nodes is either always on
(Ai = 1) or always off (Ai = 0), which can be undesir-
able. By evolving the network, we can obtain more a
Gaussian activity distribution. This is shown in Fig. 3C,
where and RTN with F+ = 0.54 and an evolved network
with α = 0.75 have the same A∞ = 0.74, but very dif-
ferent pA(Āi). The pA(Āi) of the evolved network from
Fig. 3B displays three peaks centered around each of the
α ∈ {0.1, 0.5, 0.9}. Thus, for large enough networks, this
can in principle be used to obtain an arbitrary activity
distribution pA(Āi) within the network.

III. MEAN-FIELD THEORY

A. Activity A∞

The annealed approximation was introduced by Der-
rida & Pomeau [29] and it is a useful tool to study the
dynamics of RTNs. The idea behind it is to ignore tem-
poral correlations between nodes, making each node in-
dependent. This is equivalent to shuffling the network
links at each timestep. When we take into account the
effect of F+, the activity at time t+ 1 is given by

A(t+1) =

n−1∑
k=1

pk

k∑
m=h+1

(
k

m

)
A(t)m (1−A(t))

k−m
P+(m)

(3)
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Figure 3. Network activity with an adaptive algorithm.
A. Evolution with a single α for the network. The arrows in-
dicate the parameters

(
α, F 0

+

)
. B. Evolution with multiple

α ∈ {0.1, 0.5, 0.9} within the same network. C. Activity dis-
tribution between nodes pA(Āi) for the RTN (full line) with
F+ = 0.54 and A∞ = 0.74, evolved network with α = 0.75
and F 0

+ = 0.5 (dashed line) and the evolved network from (B)
(dotted line). Other parameters are n = 103 , K = 102 and
h = 0.

where P+(m) is given by

P+(m) =

m∑
l=bm+h

2 c+1

(
m

l

)
F l+ (1− F+)

m−l (4)

with pK denoting the degree distribution of the network,
and bxc the floor function of x. In principle, Eq. 3 can
be solved graphically to yield A∞. It compares favorably
with numerical simulations for the dynamics of RTNs
without a self-regulating state [18]. An interesting fea-
ture of Eq. 3 is that it predicts more than two fixed points
A∞ for some cases. For instance, for K = 25, h = 2
and F+ = 0.6 with an ER topology the fixed points are
A∞ ∈ {0, 0.10, 0.49}. Nonetheless, we were unable to find
more than one stable non-zero fixed point (A∞ = 0.49 in
this case) in the explored parameter space.

The annealed approximation has some quirks, however.
It demands the knowledge of the full degree distribution,
which is not relevant in the high-degree regime (Fig. 4C).
Care must also be taken when numerically evaluating it,
as naively computing

(
m
l

)
F l+ (1− F+)

m−lcan lead to ma-
chine precision errors. More importantly, it does not eas-
ily tell us how to generate a network with a determined
value of A∞. In this section we obtain a simplified ver-
sion of Eq. 3 with the aim to facilitate its application to
the study of RTNs.

Let us first look into Eq. 4, as P+(m) is the most im-
portant term of Eq. 3. We can use the identity

Ip(n+ 1, N − n) =

N∑
i=n+1

(
N

n

)
pi(1− p)N−i (5)

to write P+(m) in terms of the regularized incomplete
beta function Iz(a, b), which is defined for non-integer a
and b. By approximatingbx/2c ≈ x/2−1/4, we can write

P+(m) = IF+

(
m+ h+ 3/2

2
,
m− h+ 1/2

2

)
(6)

As already mentioned, in the high-degree regime the in-
fluence of the degree distribution is small. We can then
substitute the sum over pK in Eq. 3 for the average degree
K. If we assume that P+(m) is a slow-varying function,
we can remove it from the innermost sum in Eq. 3 and
substitute m by its average value m̄ = KA∞. We can
then write

A∞ =

K∑
m=h+1

{(
K

m

)
Am∞ (1−A∞)

K−m
}
P+ (KA∞)

(7)
For high degree K, we can approximate∑K
m=h+1

(
K
m

)
Am∞ (1−A∞)

K−m ≈ 1, and using Eq.
6 we write

A∞ = IF+

(
KA∞ + h+ 3/2

2
,
KA∞ − h+ 1/2

2

)
(8)
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The usefulness of Eq. 8 lies in the fact that Iz (a, b) is a
standard function in most algebra packages. Therefore,
Eq. 8 can be quickly solved graphically or numerically
with minimal effort. More importantly, the inverse of
IX(a, b) = Y , I−1Y (a, b) = X is also a standard function.
We can use it to write

F+ = I−1A∞

(
KA∞ + h+ 3/2

2
,
KA∞ − h+ 1/2

2

)
(9)

which gives us the necessary value for F+ to generate a
RTN with degree K and activity A∞. This allows us to
control the activity A∞ of the network by manipulating
the balance between excitatory and inhibitory links.

In Fig. 4 we compare the results from Eq. 9 (plotted
with inverted axis) and numerical simulations. Our sim-
plified approximation matches well the simulation results
in most cases. However, it fails to capture the transition
between A∞ = 0 and A∞ > 0, producing a second low
A∞ fixed point that is not observed in Eq. 3. This is
caused by our assumption that P+(m) is slow-varying
breaking down at the transition between A∞ = 0 and
A∞ > 0. Our simplification of pk = δk,K can also pro-
duce divergences for low K and high h, where the degree
distribution of the network can significantly change A∞.
This is evident in Figure 4C, where we compare A∞for
networks with Erdős–Rényi (ER) and Barabási-Albert
(BA) topologies [30, 31] and h = 2. As K increases, how-
ever, both converge to the same A∞. For h > 2, both
ER and BA networks converge to the same A∞ even with
K = 10 (not shown).

It is important to note that for high K the approx-
imation fails in one direction: predicting A∞ > 0 for a
network with A∞ = 0. When the network has a non-zero
A∞ the results of our approximation are quite accurate
to describe the fixed point activity of the network. There-
fore, if we know that the network can maintain activity
and is well-connected, we can use Eq. 8 and 9 to predict
its properties. In other words, our approximation is ap-
plicable as long as A∞ > AC∞, which is shown in Fig.
2A.

B. Sensitivity λ

The sensitivity of RTNs was studied in [18]. The model
used, however, has long-term correlations resulting in a
complicated mean-field approximation. In this section
we propose a simpler mean-field approximation of λ for
the dynamics defined in Eq. 1, and study its relationship
to the network activity A∞.

The basic idea of the approximation is to look into
the contribution of a node j in the input sum Si(t) =∑
k wikσk(t) of node i. Let us define the input sum of i

at time t without considering j as S′i =
∑
k 6=j wijσk(t).

For a threshold of h, a flip of σj(t) can only cause a
flip of σi(t + 1) if S′i(t) = h or S′i(t) = h + 1. If P (m)
is the probability of node i having m active neighbors

A

B

C

Figure 4. Comparison between simulations (points)
and the mean-field approximation (lines) for A∞. A.
Results for ER networks with h = 0 and K ∈ {10, 50, 100}.
B. Same as (A) for h = 1. C. Comparison for ER and BA
networks with the approximation for K = 10 (solid line)
and K = 100 (dashed line). Parameters are n = 103 and
A (0) = 0.95, and each point is the average of 102 simula-
tions.
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B

Figure 5. Sensitivity λ of RTNs. A. Comparison between
simulations (points) and the mean-field approximation (lines)
for h = 1. B. Relationship between A∞ and λ for varying K
and h. The red line corresponds to critical dynamics (λ = 1).
Parameters are n = 103 and A (0) = 0.9, and each point is
the average of 102 simulations.

between k − 1 in-neighbors, the probability Pk(j, i) of
node j inducing a flip on node i is given by

Pk(j, i) =

k−1∑
m=h

P (m)

{
P (S′i = h)Pk(j, i|S′i = h) +

P (S′i = h+ 1)Pk(j, i|S′i = h+ 1)

}
(10)

where

P (m) =

(
k − 1

m

)
Am∞ (1−A∞)

k−1−m (11)

For m active nodes S′i = h is only possible if m + h is
even and m ≥ h. In this case we have

P (S′i = h) =

(
m

(m+m)/2

)
F

(m+h)/2
+ (1− F+)

(m−h)/2

(12)

Likewise, S′i = h+ 1 is only possible if m+ h is odd and
m ≥ h+ 1. In this case

P (S′i = h+1) =

(
m

m+h+1
2

)
F

(m+h+1)/2
+ (1− F+)

(m−h−1)/2

(13)
If S′i = h, node j can only alter the state of i if wij = +1.
If S′i = h+ 1 however, node j can flip i only if wij = −1.
In other words, Pk(j, i|S′i = h) = F+ and Pk(j, i|S′i =
h+ 1) = 1−F+. Substituting Eq. 11-13 into Eq. 10, we
have

Pk(j, i) =

k−1∑
m=h

(
k − 1

m

)
Am(1−A)K−1−m × (14)

F
(m+h)/2
+ (1− F+)

(m−h)/2
γh (m,F+)

where

γh (m,F+) =

{(
m

(m+h)/2

)
F+ , m+ h even(

m
(m+h+1)/2

)√
F+ (1− F+) , m+ h odd

(15)
The sensitivity λ is the mean value of Pk(j, i):

λ =

n−1∑
k=1

pink Pk(j, i) (16)

where pink denotes the in-degree distribution of the net-
work. If we approximate pink → K, we have our final
result

λ = K

K−1∑
m=h

(
K − 1

m

)
Am∞(1−A∞)K−1−m (17)

×F (m+h)/2
+ (1− F+)

(m−h)/2
γh (m,F+)

where γh (m,F+) is given by Eq. 15. In Fig. 5A we com-
pare Eq. 17 to simulation results for h = 1. Our approx-
imation provides a good match to the results.

As both λ and A∞ depend on the same set of param-
eters, they cannot be freely chosen. We can then use λ
as a constraint on A∞. This can be done by numerically
solving the coupled system made of Eq. 3 and Eq. 16.
However, in the high K regime we can substitute Eq. 9
into Eq. 17 to obtain λ = λ (A∞,K, h). In Fig. 5B we
show the relationship between λ and A∞ for varying K
and h. The network is insensitive to perturbation for
A∞ = 0 and 1. Between these two extremes λ is a con-
cave function of A∞, with higher K resulting in higher
λ. While h creates regions with λ = 0 (Fig. 2B), it does
not significantly change the value of λ > 0. There exists
a critical point (λ = 1) for most K and h and high A∞.
However, if K is low (and h is also low, to allow A∞ > 0)
another critical point will appear with low A∞.

IV. DISCUSSION

At the core of our study is the idea that Random
Threshold Networks are robust to changes in the topol-
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ogy, and that their activity can be controlled by balanc-
ing excitation and inhibition. Here, we found a much
richer dynamics for varying fractions of excitatory and
inhibitory links than for the special case of equal balance
(F+ = 0.50). The stable network activity covers a large
and non-trivial range of values, and we find that network
sensitivity and activity depend on the same factors, and
cannot be freely chosen.

More importantly we find that, for well-connected net-
works, criticality requires an excess of excitatory connec-
tions, and is only possible in a narrow band of inhibition.
Our model results pose interesting questions w.r.t. in-
hibition in the brain. GABAergic neurons in vitro are
known to shift from having an excitatory to inhibitory
effect during development [32]. In our model, the shift
results in subcritical dynamics early on being a necessary
step to reach criticality, which is compatible with results
of avalanches of activity in vitro [33, 34]. Evidence points
towards no GABA shift in vivo, however, with GABAer-
gic neurons always being inhibitory [35, 36]. In this sit-
uation, our model predicts that a constant level of inhi-
bition is required for criticality during network growth.
This is compatible with the finding that the fraction of
GABAergic neurons is constant during development in
vivo [37]. Thus, our results on the influence of inhibi-
tion on the critical point possibly provide independent
support for the hypothesis of a near-critical dynamics in
cortical tissue.

Using a simple adaptive algorithm, we increased our
control from the global average to the activity distribu-
tion within the network. The model can also be extended

in other ways in order to generate specific topologies. For
instance, a link creation rule can be used to balance the
link pruning, or link shuffling to maintain the degree dis-
tribution. The topological evolution rules can also be
changed in order to control other properties of the net-
work. Scale-free networks with controllable activity can
in principle be generated both through growth [31] and
pruning [38].

Overall our RTN model, using simple threshold units,
is able to generate rich dynamics with a phase transition.
It does not depend on details of the network topology,
and has both inhibitory interactions and stable, cease-
less dynamics. This can make the RTN an interesting
minimal model to explore mechanisms of neural dynam-
ics, as the brain has inhibition, an evolving topology and
a dynamics with input integration and thresholding.

ACKNOWLEDGMENTS

JPN thanks the financial support of the São Paulo Re-
search Foundation (FAPESP) under grants 2012/18550-4
and 2013/15683-6, and of the Brazilian National Coun-
cil for Scientific and Technological Development (CNPq)
under grant 206891/2014-8. MAM thanks the finan-
cial support of FAPESP under grants 2016/06054-3 and
2016/01343-7, and CNPq under grant 302049/2015-0.
JAB thanks the financial support of FAPESP under grant
2016/04783-8.

[1] György Buzsáki, Kai Kaila, and Marcus Raichle. Inhibi-
tion and Brain Work. Neuron, 56(5):771–783, dec 2007.

[2] Henry Markram, Maria Toledo-Rodriguez, Yun Wang,
Anirudh Gupta, Gilad Silberberg, and Caizhi Wu. In-
terneurons of the neocortical inhibitory system. Nat. Rev.
Neurosci., 5(10):793–807, oct 2004.

[3] Jeffry S Isaacson and Massimo Scanziani. How inhibition
shapes cortical activity. Neuron, 72(2):231–243, oct 2011.

[4] Taro Toyoizumi, Hiroyuki Miyamoto, Yoko Yazaki-
Sugiyama, Nafiseh Atapour, Takao K. K. K Hensch, and
Kenneth D. D. D Miller. A Theory of the Transition
to Critical Period Plasticity: Inhibition Selectively Sup-
presses Spontaneous Activity. Neuron, 80(1):51–63, 2013.

[5] Daniel B. Larremore, Woodrow L. Shew, Edward Ott,
Francesco Sorrentino, and Juan G. Restrepo. Inhibi-
tion Causes Ceaseless Dynamics in Networks of Excitable
Nodes. Phys. Rev. Lett., 112(13):138103, apr 2014.

[6] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-
organized criticality: An explanation of the 1/f noise.
Phys. Rev. Lett., 59(4):381–384, jul 1987.

[7] Stefan Bornholdt and Thimo Rohlf. Topological evolu-
tion of dynamical networks: global criticality from local
dynamics. Phys. Rev. Lett., 84(26 Pt 1):6114–6117, jun
2000.

[8] Matthias Rybarsch and Stefan Bornholdt. Avalanches
in self-organized critical neural networks: a minimal

model for the neural SOC universality class. PLoS One,
9(4):e93090, jan 2014.

[9] Thilo Gross and Hiroki Sayama, editors. Adaptive Net-
works. Understanding Complex Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[10] Thilo Gross and Bernd Blasius. Adaptive coevolution-
ary networks: a review. J. R. Soc. Interface, 5(October
2007):259–271, mar 2008.

[11] Thilo Gross, Carlos J Dommar D’Lima, and Bernd Bla-
sius. Epidemic dynamics on an adaptive network. Phys.
Rev. Lett., 96(20):208701, may 2006.

[12] Takaaki Aoki and Toshio Aoyagi. Scale-Free Structures
Emerging from Co-evolution of a Network and the Dis-
tribution of a Diffusive Resource on it. Phys. Rev. Lett.,
109(20):208702, nov 2012.

[13] John M Beggs and Dietmar Plenz. Neuronal avalanches
in neocortical circuits. J. Neurosci., 23(35):11167–77, dec
2003.

[14] Nir Friedman, Shinya Ito, Braden A W Brinkman,
Masanori Shimono, R. E Lee Deville, Karin A. Dahmen,
John M. Beggs, and Thomas C. Butler. Universal criti-
cal dynamics in high resolution neuronal avalanche data.
Phys. Rev. Lett., 108(20):1–5, 2012.

[15] Dietmar Plenz and Ernst Niebur, editors. Criticality in
Neural Systems. Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, apr 2014.



9

[16] Viola Priesemann, Michael Wibral, Mario Valderrama,
Robert Pröpper, Michel Le Van Quyen, Theo Geisel,
Jochen Triesch, Danko Nikolić, and Matthias H J Munk.
Spike avalanches in vivo suggest a driven, slightly sub-
critical brain state. Front. Syst. Neurosci., 8(June):108,
2014.

[17] Jens Wilting and Viola Priesemann. Branching into the
Unknown: Inferring collective dynamical states from sub-
sampled systems. 2016.

[18] Jorge G. T. Zañudo, Maximino Aldana, and Gustavo
Martínez-Mekler. Boolean Threshold Networks: Virtues
and Limitations for Biological Modeling. In Samuli Niira-
nen and Andre Ribeiro, editors, Inf. Process. Biol. Syst.,
volume 11 of Intelligent Systems Reference Library, pages
113–135. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[19] M Andrecut, D Foster, H Carteret, and S a Kauff-
man. Maximal information transfer and behavior diver-
sity in Random Threshold Networks. J. Comput. Biol.,
16(7):909–916, jul 2009.

[20] Thimo Rohlf and Stefan Bornholdt. Criticality in ran-
dom threshold networks: annealed approximation and
beyond. Phys. A Stat. Mech. its Appl., 310(1-2):245–259,
jul 2002.

[21] Thimo Rohlf. Critical line in random-threshold net-
works with inhomogeneous thresholds. Phys. Rev. E,
78(6):66118, dec 2008.

[22] Agnes Szejka, Tamara Mihaljev, and Barbara Drossel.
The phase diagram of random threshold networks. New
J. Phys., 10(6):063009, jun 2008.

[23] Rui-Sheng Wang and Réka Albert. Effects of community
structure on the dynamics of random threshold networks.
Phys. Rev. E, 87(1):012810, jan 2013.

[24] Warren S. McCulloch andWalter Pitts. A logical calculus
of the ideas immanent in nervous activity. Bull. Math.
Biophys., 5(4):115–133, dec 1943.

[25] Maria Davidich and Stefan Bornholdt. Boolean network
model predicts cell cycle sequence of fission yeast. PLoS
One, 3(2):e1672, jan 2008.

[26] Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao
Tang. The yeast cell-cycle network is robustly designed.
Proc. Natl. Acad. Sci. U. S. A., 101(14):4781–4786, apr
2004.

[27] Matthias Rybarsch and Stefan Bornholdt. Binary thresh-
old networks as a natural null model for biological net-
works. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.,
86(2):1–6, 2012.

[28] P R Huttenlocher and C de Courten. The development
of synapses in striate cortex of man. Hum. Neurobiol.,
6(1):1–9, 1987.

[29] B Derrida and Y Pomeau. Random Networks of Au-
tomata: A Simple Annealed Approximation. Europhys.
Lett., 1(2):45–49, jan 1986.

[30] Paul Erdös and Alfred Rényi. On random graphs. Publ.
Math., 6(1):290–297, nov 1959.

[31] Albert-László Barabási and Réka Albert. Emergence
of Scaling in Random Networks. Science (80-. ).,
286(5439):509–512, oct 1999.

[32] Yehezkel Ben-Ari. Excitatory actions of GABA during
development: The nature of the nurture. Nat. Rev. Neu-
rosci., 3(9):728–739, 2002.

[33] V. Pasquale, P. Massobrio, L. L. Bologna, M. Chiap-
palone, and S. Martinoia. Self-organization and neuronal
avalanches in networks of dissociated cortical neurons.

Neuroscience, 153(4):1354–1369, 2008.
[34] A Levina and V Priesemann. Subsampling scaling. Nat.

Commun., 8(May):15140, may 2017.
[35] Knut Kirmse, Michael Kummer, Yury Kovalchuk,

Otto W. Witte, Olga Garaschuk, and Knut Holthoff.
GABA depolarizes immature neurons and inhibits net-
work activity in the neonatal neocortex in vivo. Nat.
Commun., 6:1–13, 2015.

[36] Guzel Valeeva, Thomas Tressard, Marat Mukhtarov,
Agnes Baude, and Rustem Khazipov. An Optoge-
netic Approach for Investigation of Excitatory and In-
hibitory Network GABA Actions in Mice Expressing
Channelrhodopsin-2 in GABAergic Neurons. J. Neu-
rosci., 36(22):5961–5973, 2016.

[37] S. Sahara, Y. Yanagawa, D. D. M. O’Leary, and C. F.
Stevens. The Fraction of Cortical GABAergic Neurons Is
Constant from Near the Start of Cortical Neurogenesis
to Adulthood. J. Neurosci., 32(14):4755–4761, 2012.

[38] Christian M Schneider, L. de Arcangelis, and H. J. Her-
rmann. Scale-free networks by preferential depletion.
EPL (Europhysics Lett., 95(1):16005, jul 2011.



10

Appendix A: Dependence on A(0)

Which fixed point (A∞ = 0 or A∞ > 0 if it exists)
the dynamics stays at depends on the input A(0) used to
activate the network. A critical input AC0 is needed for
ceaseless dynamics, below which the network quickly goes
to A∞ = 0. This is exemplified in Fig. 6A, where the dy-
namics dies out for A(0) = 0.01 but not for A(0) ≥ 0.02.
The value of AC0 can be obtained numerically from a
mean-field approximation (Sec. IIIA), corresponding to
the n → ∞ case. For any realization of the dynam-
ics, however, there is a probability of it dying out even if
A(0) > AC0 . This probability depends chiefly on the value
of A(t), so if A∞ is high the dynamics is only likely to die
at the beginning and with a low A(0). The time it takes
for the dynamics to reach A∞ depends predominantly
on A(0), but also on factors such as the degree distribu-
tion pK of the network and λ. In Fig. 6B we show the
dependency of the probability Pdeath of extinction (i.e.
A(t) = 0) on A(0) as a function of n. As n→∞, Pdeath
resembles a step function. In order to sidestep this issue,
in the main text we always activate the network with a
high A(0) = 0.90 or A(0) = 0.95.

Appendix B: Adaptive algorithm

Here we describe in more detail the adaptive algorithm
used in Sec. IID. The average activity of node i is defined
as Āi =

∑t=τ
t=0 σi(t)/τ , where τ = 10 defines a moving

average. In the adaptive process, each Āi is compared
to a parameter αi and change its connectivity according
to a certain set of rules. The important question is then
which set of rules, combined with a specific distribution of
Āi, can produce a certain topology and network activity.
In other words, the problem amounts to the exploration
of the class of adaptive threshold networks with local,
activity-based topological evolution. Here we follow the
simple algorithm:

1. If A(t) = 0 activate a fraction A0 of the network
nodes.

2. Run the dynamics of Eq. 1 for τ timesteps, and
choose a random node i.

3. If Āi > αi, remove a random positive in-link of
i. Otherwise remove a random negative in-link. If
there is no suitable link for removal, choose another
i.

4. Iterate from step 1.

The above algorithm can only be run a finite number of
cycles. Since a single link is removed after each cycle,
we can set the average degree K of the evolved network
by running the algorithm τcycle = n (K0 −K) cycles,
where K0 is the average degree of the initial network.

The choice of τ is not important, since A(t) stabilizes
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Figure 6. Effect of A(0) on the dynamics. A. Effect of
different A(0) on a network with n = 1000. B. Probability
Pdeath of the dynamics dying out for n ∈ {200, 1000, 2000}.
Inset: Average step of death for the simulations that ended
in A = 0. Each point is an average from 20 networks and 103

simulations each. Other parameters are K = 25, F+ = 0.6
and h = 1 for both cases.

quickly. This leaves us with only two evolutionary pa-
rameters, α and τcycle = n (K0 −K). If we start from a
fully connected network, the in-degree distribution pink of
the evolved network is given by

pink =

(
n(n− 1−K)

n− 1− k

)(
1

n

)n−1−k (
1− 1

n

)n(n−1−K)−(n−1−k)

(B1)
and the out-degree distribution poutk is given by

poutk =

(
n

k

)(
K

n− 1

)k (
1− K

n− 1

)n−k
(B2)

While both distributions are binomial, the in-degree dis-
tribution is wider than the out-degree.
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