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ABSTRACT

The brain is made of billions of functional units that interact and give raise to
its collective properties. The criticality hypothesis states that many these prop-
erties emerge due to brain dynamics operating at the critical point of a phase
transition. In models, the critical point maximizes potentially useful properties
such as sensitivity, temporal integration, and correlation length. The hypothesis
remains controversial, however, in part due to sampling effects: only a small frac-
tion of the neurons in the brain can be recorded, leading to bias in the observed
collective properties.

In this Thesis we analyze how sampling effects can bias the assessment of crit-
icality in neural networks.We explore sampling effects both inmodels with criti-
cal dynamics and in experimental results, and find a number ofmechanisms that
can result in bias. Chiefly, we develop a model of neuronal avalanches where ac-
tivity is sampled in different levels (spikes and coarse signals), and show that
coarse signals cannot differentiate between close to critical and very subcritical
states. This unifies contradictory results in the literature, and argue in favor of
a subcritical, reverberating state for dynamics in vivo. We also show that sam-
pling can alter the spectra of neuronal activity, and thus explain its variability.
Applying thismechanism to data, we find that flatter spectra observed in in vitro
recordings suggest poorer sampling in that condition. Lastly, we also perform
a literature review on the evidence of criticality in the brain. The picture that
emerges is that evidence is largely ambiguous, mostly due to sampling effects.
Nevertheless, a few key results offer strong evidence that criticality can emerge
in neural networks. Coupled with the prospect of considerably improved exper-
imental techniques in the near future, we argue that critical phenomena may
become increasingly useful in the understanding of brain activity.
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L I ST OF F IGURE S

Figure 1.1 Subsampling of neuronal activity.While the brain ismade
of billions of neurons (left) we can only measure the ac-
tivity of at most a few thousand neurons (right). This
sampling effect constrain our understanding of collective
behavior in the brain, and can bias the assessment of its
dynamics. Visualization createdwith the TREES toolbox [11].

2
Figure 2.1 Continuous phase transitions in experiments andmod-

els.A. Ferromagneticmaterials havedifferent critical tem-
peratures 𝑇𝐶 at which magnetization vanishes. Adapted
from [16]. B. Quiescent and active phases of a contact
process, with a critical point 𝜆 = 1. 6

Figure 2.2 Models with critical dynamics. A: Spontaneous magne-
tization 𝑚(𝑇) of the Isingmodel with one to three dimen-
sions (using 𝑘𝐵 = 𝐽 = 1) in the thermodynamic limit.
The blue curve (3D) corresponds to the mean-field (MF)
solution (Eq. 2.12). B: Time evolution of the 1D directed
(bond) percolation, with probability 𝑃 of a bond existing
and critical point 𝑃𝑐. Reproduced with permission from
[56]. C: Visualization of the Bak-Tang-Wiesenfeld model
on a 256 × 256 grid after dropping 128M sand grains in
the center. Colors correspond to number of grains: white
is 0, green is 1, blue is 2 and black is 3. Figure generated
with the Interpile toolbox [57]. 12

Figure 2.3 Directed Percolation. A. Representation of the directed
bond percolation process on a 2D diagonal lattice, with
time 𝑡 and number of active sites 𝑁(𝑡). B. Average num-
ber of active sites ⟨𝑁(𝑡)⟩ as a function of the percolation
probability 𝑃 with activity started in a single site. For 𝑃 <
𝑃𝑐 ≈ 0.6447 we find that ⟨𝑁(𝑡)⟩ decreases exponentially.
For 𝑃 = 𝑃𝑐 it increases as a power-law ⟨𝑁(𝑡)⟩ ∼ 𝑡𝜃 with
𝜃 ≈ 0.308 (sublinear, traced line). For 𝑃 > 𝑃𝑐 it increases
superlinearly. Reproduced with permission from [58].
15
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Figure 2.4 RandomThresholdNetworkwith inhibition.A.Param-
eter space for the normalized average activity 𝐴 of RTNs
with degree 𝐾 and fraction of positive links 𝐹+. B. Same
for the sensitivity to perturbation, given by theHamming
distance 𝐻. The white lines corresponds to critical dy-
namics (𝐻 = 1). Reproduced from [77]. 17

Figure 2.5 Extensions of criticality.A.Representation of self-organized
criticality (SOC): a mechanism leads the system towards
the critical energy 𝐸𝑐 from both phases, either driving
the subcritical system (adding energy) or dissipating en-
ergy of the supercritical one. Reproduced with permis-
sion from [5]. B. Representation of a Griffiths phase: an
heterogeneous topology (quenched disorder) stretches
the region with critical-like dynamics in the subcritical
phase (𝜆 < 𝜆𝑐). Reproduced with permission from [83].
20

Figure 2.6 TheGalton-Watsonbranchingprocess.A. Example time-
series from a critical (𝑚 = 1) process, with activity dying
out at different timesteps. B. The probability of survival
𝑃𝑠 for 𝑡 → ∞, as a function of the branching parameter
𝑚. The system undergoes a continuous phase transition
at 𝑚 = 1, below which activity surely dies out. 22

Figure 2.7 The driven branching process. A. Example timeseries
from driven branching processes with branching param-
eter 𝑚 < 1. The average activity of each timeseries is set
at ⟨𝐴∞⟩ = 10, and the drive ℎ is adjusted using Eq. 2.23.
We see that, as 𝑚 increases, so does the variance of the
timeseries. B. Probability of activity 𝑃ℎ

𝑠 as a function of 𝑚
and ℎ, using Eq. 2.30. ℎ > 0 smears out the phase tran-
sition of Fig. 2.6B, increasing the probability of activity.
25

Figure 2.8 Coalescence effects on branching networks. A. Differ-
ence between the true branching parameter𝑚 and the pa-
rameter estimated from the macroscopic dynamics �̂�𝐿𝑅
with no drive (ℎ = 0) for fully-connected branching net-
workswith size𝑁.B. Same asA for driven branching net-
workswith drive ℎ. Adaptedwith permission from [111].
29
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Figure 2.9 Avalanche observables of a Galton-Watson branching
process. A. Avalanche size distribution 𝑝(𝑆) for BPs with
𝑚 = 1 (red), 𝑚 = 0.99 (green) and 𝑚 = 0.9 (blue).
Dashed line corresponds to 𝑝(𝑆) ∼ 𝑆−3/2. B. Same as A
for the avalanche duration distribution 𝑝(𝐷). Dashed line
corresponds to 𝑝(𝐷) ∼ 𝐷−2.C. Same as A for the average
avalanche size ⟨𝑆⟩ of a given duration 𝐷. Dashed line cor-
responds to ⟨𝑆⟩ ∼ 𝐷2.D. Scaled average avalanche shape
𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled time 𝑡/𝐷. Simu-
lations are from a Poissonian BP (𝑋 ∼ Poisson(𝑚)) with
106 avalanches for each 𝑚. 31

Figure 2.10 Analytic solutions for 𝑝(𝑆)ofBinomial andPoissonGalton-
Watson BP. A. 𝑝(𝑆) for 𝑋 ∼ Binom (2, 𝑚/2) (full line,
Eq. 2.41) and 𝑋 ∼ Poisson(𝑚) (traced line, Eq. 2.42), for
𝑚 = 0.99. B. Same as A for 𝑚 = 0.9. 32

Figure 2.11 Avalanche shape collapse of a Galton-Watson branch-
ingprocess.A. Scaled average avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1

as a function of the scaled time 𝑡/𝐷 for 𝑚 = 1. The black
line corresponds to the average shape, while the semi-
transparent lines correspond to the average shape of avalanches
with the same duration 𝐷. B. Same as A for 𝑚 = 0.99 C.
Same as A for 𝑚 = 0.9 Simulations are from a Poissonian
BP (𝑋 ∼ Poisson(𝑚)) with 106 avalanches for each 𝑚.
33

Figure 2.12 Avalanche size distributions 𝑝(𝑆) from different stud-
ies using local field potentials. A: 𝑝(𝑆) from in vitro cul-
tures obtained in the original 2003work byBeggs&Plenz [1].
B: 𝑝(𝑆) from anesthetized rats, from Gireesh et al. [131].
C: 𝑝(𝑆) fromawakemonkeys, fromPetermann et al. [132].
D: 𝑝(𝑆) fromawakemonkeyswith a highdensity (smaller)
recording array, from Klaus et al. [133]. Figure adapted
from [133]. doi:10.1371/journal.pone.0019779.g001 34

Figure 2.13 Avalanche observables from Friedman et al. [134]. A.
Avalanche size distribution 𝑝(𝑆) from a sample culture,
fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with 𝛼 = 1.7. B. Same as A for the
avalanche duration distribution 𝑝(𝐷), fitted to 𝑝(𝐷) ∼
𝐷−𝛽 with 𝛽 = 1.9.C. Same as A for the average avalanche
size ⟨𝑆⟩(𝐷), fitted to ⟨𝑆⟩ ∼ 𝑆𝛾 with 𝛾 = 1.3. D. Scaled av-
erage avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the
scaled time 𝑡/𝐷. Adapted from [134]. 37
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Figure 2.14 Avalanche observables from Kanders et al. [150]. A.
Avalanche size distribution 𝑝(𝑆) from a sample culture,
fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with 𝛼 = 2.18±0.05. B. Same as A for
the avalanche duration distribution 𝑝(𝐷), fitted to 𝑝(𝐷) ∼
𝐷−𝛽 with 𝛽 = 2.76 ± 0.16. C. Same as A for the average
avalanche size ⟨𝑆⟩(𝐷), fitted to ⟨𝑆⟩ ∼ 𝑆𝛾 with 𝛾 = 1.43 ±
0.05. D. Scaled average avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as
a function of the scaled time 𝑡/𝐷. Adapted from [150].
38

Figure 2.15 Avalanche observables fromPonce-Alvarez et al. [148].
A.Avalanche size distribution 𝑝(𝑆) from 𝑁 = 6 zebrafish
larvae, fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with 𝛼 = 2.01 ± 0.03. B.
Same as A for the avalanche duration distribution 𝑝(𝐷),
fitted to 𝑝(𝐷) ∼ 𝐷−𝛽 with 𝛽 = 3.01 ± 0.11. C. Same as
A for the average avalanche size ⟨𝑆⟩(𝐷), fitted to ⟨𝑆⟩ ∼
𝑆𝛾 with 𝛾 = 1.85 ± 0.03. D. Scaled average avalanche
shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled time 𝑡/𝐷.
Adapted from [148]. 39

Figure 2.16 Experimental evidence of reverberating dynamics. A.
Estimated branchingparameter �̂� ofmonkeys (prefrontal
cortex), cats (visual cortex) and rats (hippocampus).Adapted
from [177]. B. Estimated branching parameter �̂� of hu-
man patients with epilepsy, for the epileptic region (pur-
ple) andnon-epileptic hemisphere (gray). Brain areas are
the hippocampus (H), amygdala (A), parahippocampal
cortex (PHC) and entorhinal cortex (EC). Adapted from
[170]. 43

Figure 2.17 Reverberating dynamics in vivo. A. Example timeseries
of activity with Poissonian (𝑚 = 0), Reverberating (𝑚 =
0.98) and near-critical (𝑚 = 0.9999) dynamics. B. Hier-
archical representation of the visual and auditory sys-
tems. As input moves up the hierarchy, timescales in-
crease. C. Representation of a tuning mechanism from
a baseline reverberating dynamics: if a predator sees a
prey, relevant areas are tuned in (increased timescales),
while non-relevant areas are tuned out. Reproduced from
[100]. 44

Figure 3.1 Effects of subsampling on abranchingprocesswith𝑚 =
0.99. A. Activity timeseries 𝐴(𝑡) of the BP with sampling
probability 𝑝 = 1 (blue) and 𝑝 = 0.01 (orange). B. Au-
tocorrelation function 𝐶(𝑡) of the timeseries of A. C. Esti-
mation of the branchingparameter �̂�byfitting𝐴 (𝑡 + 1) =
�̂�𝐴 (𝑡) + ℎ, for varying levels of 𝑝. 46
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Figure 3.2 Coarse graining the Ising model. A. Representation of
the coarse grainingwhere a 4×4 (𝐿4) systemgets rescaled
to a 2 × 2 system with a majority rule and block size 𝑏 =
2. B. Effect of coarse graining on the average magneti-
zation 𝑚(𝑇) with block size 𝑏 = 4. Since the system is
rescaled by a factor of 1/𝑏2, the blocked system with size
𝐿64 needs to be compared to an unblocked system with
size 𝐿16. Only for 𝑇 = 𝑇𝐶 we find an invariant 𝑚(𝑇) un-
der coarse graining. C. Comparison between the fully-
sampled, unblocked system and blocked systems using
the majority rule and the decimation rule for 𝑏 = 4. All
simulations and curves for 𝐿 = 64. In the ordered, low-
temperature phase, the sub curve matches the fully sam-
pled system. Only for the high-temperature phase devi-
ations occur due to finite-size effects (the magnetization
for𝑇 → ∞ approaches the value expected for the rescaled
𝐿 = 16 system). The coarse curve is systematically biased
towards more ordered states. 48

Figure 3.3 Coarse graining the Ising model. A. Representation of
the standard coarse graining where block size matches
the distance between blocks (𝑑 = 𝑏 = 4). No overlap
is created. B. Coarse graining with block size 𝑏 = 4 and
a distance between blocks of 𝑑 = 3. Overlapping spins
(orange) are shared by two or more blocks. C. With the
majority rule, overlap impacts the spontaneous magne-
tization 𝑚(𝑇). Only the crossing between the unblocked
(𝐿 = 16) and non-overlapping blocked system (𝑑 = 𝑏,
𝐿 = 64) happens at 𝑇 = 𝑇𝐶, as would be expected. In-
triguingly, the overlap (𝑑 < 𝑏, 𝐿 = 32) pushes the system
towards higher magnetization where spins appear more
aligned.On the other hand, the absence of overlap (𝑑 > 𝑏,
𝐿 = 128) causes smaller magnetization where spins ap-
pear more random. 49

Figure 3.4 Power spectral density (PSD) and autocorrelation of
branchingprocesses.A.PSDof branchingprocesseswith
𝑚 ∈ [0.9, 0.999]. The vertical lines correspond to the cut-
off frequency 𝑓0 = −log 𝑚/2𝜋 for both 𝑚 (traced line
for 𝑚 = 0.999, solid line for 𝑚 = 0.9). B. Autocorrela-
tion function 𝐶(𝑡) for the same branching processes as
A. Horizontal line corresponds to 𝐶(𝑡) = 1/𝑒. Simulation
data from branching processes with drive with average
activity 𝐴∞ = 50 and 106 timesteps. 51



xviii L I S T O F F I GURE S

Figure 3.5 Power spectral density from electrodemeasurements of
neuronal activity.PSDof Local Field Potential (LFP)mea-
sures in vitro from neuronal cultures (blue), LFP in vivo
frommice (orange) and intra-cranial Electroencephalog-
raphy (iEEG) in vivo from humans (green). 53

Figure 3.6 Power spectral density of subsampled branching pro-
cesses. A. PSD of a BP with 𝑚 = 0.999 (close to critical)
where events are observed with probability 10−3 ≤ 𝑝 ≤
1. B. Same as A for a BP with 𝑚 = 0.9 (subcritical). Sub-
sampling convolves the (Lorentzian) spectrum of the BP
with the flat spectrum of an uncorrelated process. 54

Figure 3.7 Representation of electric potentials. A. Representation
of an electric monopole, caused by a single charge +𝑄. B.
Representation of an electric dipole, caused by a positive
charge +𝑄 (a source) and a negative charge −𝑄 (a sink).
C. Illustration of the dendritic tree of a pyramidal neuron.
The apical tree (top) is negatively charged, while the cell
body (bottom) is positively charged. As a first approxi-
mation, it can be modeled as a dipole. 56

Figure 3.8 Power spectral density of a virtual electrodewith a 1/𝑅𝛾

field of view.A. PSDof a BPwith 𝑚 = 0.999 (close to crit-
ical)where events are observed a virtual electrodewhose
field of view decreases with distance 𝑅 as 1/𝑅𝛾. B. Same
as A for a BP with 𝑚 = 0.9 (subcritical). The underlying
dynamics is made of of 𝑁 = 104 units each connected
to the nearest 𝐾 = 103 neighbours in a 2D space with
distance-dependentweights. The flat spectra for high fre-
quencies 𝑓 is the result of aliasing effects. 57

Figure 3.9 Power spectral density filteredwithpower-law shot noise.
A. PSD of a BP with 𝑚 = 0.999 (close to critical) subject
to a power-law shot noise filter with exponent 𝛾𝑓 < 2.
B. Same as A for a BP with 𝑚 = 0.9 (subcritical). The
underlying dynamics is made of of 𝑁 = 104 units each
connected to the nearest 𝐾 = 103 neighbors in a 2D space
with distance-dependentweights. The flat spectra for high
frequencies 𝑓 is the result of aliasing effects. 58
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Figure 3.10 Branching parameter under spatial (coarse) sampling
and temporal filtering.A. Single (𝑚1) andmulti-step (𝑚𝑀𝑅)
estimations of the branching parameter 𝑚 of a branch-
ing process, sampledwith a virtual electrodewith a 1/𝑅𝛾

field of view. B. Amount of bias Δ𝑚 = 𝑚𝑀𝑅 − 𝑚1 in the
estimation of 𝑚 caused by the spatial sampling. C. Effect
of (power-law shot noise) frequency filtering on the esti-
mation of 𝑚. The timeseries is convolvedwith a filter that
produces a 1/𝑓 𝛾𝑓 PSD. 59

Figure 3.11 PSD exponent 𝛽 from a combination of filtering and
sampling. By combining the 1/𝑅𝛾 electrode field of view
(which decreases sampling with increasing 𝛾) with the
1/𝑓 𝛾𝑓 frequency filter the entire range of exponents 0 ≤
𝛽 < 4 can be obtained. 60

Figure 3.12 PSDs observed in different experiments. A. PSD of LFP
recordings of the cat visual cortex during awakeness (black)
and slow-wave sleep (SWS, gray).Dotted lines correspond
to power-laws 1/𝑓 𝛽. Adapted with permission from [8].
B. PSD of LFP recordings of the mouse hippocampus re-
gions CA1 (red) and CA3 (blue, plotted with an offset)
during sleep, from 32 channels each. Data from [217].
C. PSD of human ECoG recordings. The blue line cor-
responds to the original spectra, while the green line is
the PSD multiplied by a form factor 1 + (𝑓 /𝑓0)4−𝜉𝐿 , with
𝜉𝐿 = 2 and 𝑓0 = 75Hz. Adapted from [216]. 61

Figure 3.13 Analysis of experimental data fromvarious sources.Red:
in vitro LFP recordings from rat hippocampal cell cul-
tures during development. Blue: LFP recordings of rat
hippocampusduring sleep, usingdata from [217].Green:
LFP recordings from monkey LFP (various regions), us-
ing data from [220]. Blue: intracranial EEG recordings
from humans during task, using data from [221]. Black
line: Simulation with 𝑚 = 0.99, and a varying electrode
field of view (varying 𝛾) changing how well it samples
the activity. 62
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Figure 4.1 Sampling affects the assessment of dynamic states from
neuronal avalanches. A: Representation of the sampling
process of neurons (black circles) using electrodes (or-
ange squares). Under coarse-sampling (e.g. LFP), activ-
ity is measured as a weighted average in the electrode’s
vicinity. Under sub-sampling (spikes), activity is mea-
sured from few individual neurons.B:Fully sampledpop-
ulation activity of the neuronal network, for states with
varying intrinsic timescales 𝜏: Poisson ( ̂𝜏p𝑠𝑛 ≈ 0ms),
subcritical ( ̂𝜏s𝑢𝑏 ≈ 19ms), reverberating ( ̂𝜏r𝑒𝑣 ≈ 98ms)
and critical ( ̂𝜏c𝑟𝑖𝑡 ≈ 1.6 s). C: Avalanche-size distribution
𝑝(𝑆) for coarse-sampled (left) and sub-sampled (right)
activity. Sub-sampling allows for separating the differ-
ent states, while coarse-sampling leads to 𝑝(𝑆) ∼ 𝑆−𝛼 for
all states except Poisson. Parameters: Inter-electrode dis-
tance 𝑑E = 400µm and time-bin size Δ𝑡 = 8ms. 73

Figure 4.2 Analysis pipeline for avalanches from sampled data.
I:Under coarse-sampling (LFP-like), the recording is de-
meaned and thresholded. II: The timestamps of events
are extracted. Under sub-sampling (spikes), timestamps
are obtained directly. III: Events from all channels are
binned with time-bin size Δ𝑡 and summed. The size 𝑆
of each neuronal avalanche is calculated. IV: The prob-
ability of an avalanche size is given by the (normalized)
count of its occurrences throughout the recording. 74

Figure 4.3 Coarse-sampling leads to greater correlations than sub-
sampling.Pearson correlation coefficient between the sig-
nals of two adjacent electrodes for the different dynamic
states. Even for independent (uncorrelated) Poisson ac-
tivity, measured correlations under coarse-sampling are
non-zero.Parameters: Inter-electrodedistance 𝑑E = 400µm
and time-bin size Δ𝑡 = 8ms. 76
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Figure 4.4 Under coarse-sampling, apparent dynamics depend on
the inter-electrode distance 𝑑E. A: For small distances
(𝑑E = 100µm), the avalanche-size distribution 𝑝(𝑆) in-
dicates (apparent) supercritical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼

with a sharp peak near the electrode number 𝑁E = 64. For
large distances (𝑑E = 500µm), 𝑝(𝑆) indicates subcritical
dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 with a pronounced decay already for
𝑆 < 𝑁E. There exists a sweet-spot value (𝑑E = 250µm) for
which 𝑝(𝑆) indicates critical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 until
the the cut-off is reached at 𝑆 = 𝑁E. The particular sweet-
spot value of 𝑑E depends on time-bin size (here, Δ𝑡 =
4ms). As a guide to the eye, dashed lines indicate 𝑆−1.5.
B:The branching parameter𝑚a𝑣 is also biased by 𝑑E when
estimated from neuronal avalanches. Apparent critical-
ity (𝑚a𝑣 ≈ 1, dotted line) is obtained with 𝑑E = 250µm
and Δ𝑡 = 4ms but also with 𝑑E = 400µm and Δ𝑡 =
8ms. B, Inset: representation of the measurement over-
lap between neighboring electrodes; when electrodes are
placed close to each other, spurious correlations are in-
troduced. 77

Figure 4.5 In vivo and in vitro avalanche-size distributions 𝑝(𝑆)
fromLFP depend on time-bin size Δ𝑡. Experimental LFP
results are reproduced bymanydynamics states of coarse-
sampled simulations.A:Experimental in vivo results (LFP,
human) froman array of 60 electrodes, adapted from [137].
B: Experimental in vitro results (LFP, culture) from an ar-
raywith 60 electrodes, adapted from [1].C–F: Simulation
results from an array of 64 virtual electrodes and vary-
ing dynamic states, with time-bin sizes between 2ms ≤
Δ𝑡 ≤ 16ms and 𝑑E = 400µm. Subcritical, reverberat-
ing and critical dynamics produce power-law distribu-
tions with bin-size-dependent exponents 𝛼. Insets: Dis-
tributions are fitted to 𝑝(𝑆) ∼ 𝑆−𝛼. The magnitude of 𝛼
decreases as Δ𝑡−𝛽 with −𝛽 indicated next to the insets.
78
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Figure 4.6 In vivo avalanche-size distributions 𝑝(𝑆) from spikes
depend on time-bin size Δ𝑡. In vivo results from spikes
are reproduced by sub-sampled simulations of subcrit-
ical to reverberating dynamics. Neither spike experi-
ments nor sub-sampled simulations show the cut-off that
is characteristic under coarse-sampling. A: Experimental
in vivo results (spikes, awake monkey) from an array of
16 electrodes, adapted from [179]. The pronounced de-
cay and the dependence on bin size indicate subcritical
dynamics. B: Experimental in vitro results (spikes, cul-
ture DIV 34) from an array with 59 electrodes, adapted
from [22]. Avalanche-size distributions are independent
of time-bin size and produce a power law over four or-
ders of magnitude. In combination, this indicates criti-
cal dynamics with a separation of timescales. C–F: Sim-
ulation for sub-sampling, analogous to Fig. 4.5. Subcrit-
ical dynamics do not produce power-law distributions
and are clearly distinguishable from critical dynamics.
F:Only the (close-to) critical simulation produces power-
law distributions. Note the dependence on time-bin size:
In contrast to the in vitro culture, the simulation does not
feature a separation of time scales (due to external drive
and stationary activity) which causes a bin-size depen-
dence. 79

Figure 4.7 Scaling laws of a system with critical dynamics under
coarse- and sub-sampling. A–C: Avalanche-size distri-
bution 𝑝(𝑆) ∼ 𝑆−𝛼, avalanche-durationdistribution 𝑝(𝐷) ∼
𝐷−𝛽, and average size for a given duration ⟨𝑆⟩(𝐷) ∼ 𝐷𝛾,
respectively, for sub-sampled (“sub”) and coarse-sampled
(“coarse”) simulations.Distributions under sub-sampling
easily spanmore than one order ofmagnitude,while coarse-
sampled distributions suffer from an early cut-off (which
hinders power-law fits).D, E: Shape collapse of 𝑠(𝑡, 𝐷) ∼
𝐷𝛾−1F (𝑡/𝐷) for sub-sampled and coarse-sampled data,
respectively. Under coarse-sampling, the early duration
cut-off results in few unique shapes for the collapse (cor-
responding to unique 𝐷-values). F: Comparison of the
critical exponents obtained independently fromEqs. (4.4)–
(4.6). Exponents are consistent only under sub-sampling.
Parameters: 𝑑E = 400µm and Δ𝑡 = 8ms. 82
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Figure 4.8 Effect of alternative network topologies.Avalanche-size
probability 𝑝(𝑆) from coarse-sampled activity (left) and
sub-sampled activity (right) for subcritical, reverberat-
ing and critical dynamics. Top: results for the topology
used in the main paper (”Local”). Middle: results for a
topology that mimics culture growth [233] (”Orlandi”).
Bottom: results for a random topology.Under coarse-sampling,
reverberating and critical dynamics are indistinguishable
with all topologies. Parameters: 𝑑E = 400 µm and Δ𝑡 =
8 ms. 84

Figure 4.9 Effect of changing the electrode contribution ∼ 1/𝑑−𝛾

of a spikingneuron at distance 𝑑. A: Avalanche-size prob-
ability 𝑝(𝑆) with 𝛾 = 1.0 for Δ𝑡 = 2ms and 𝑑E = 100µm.
B: Avalanche-size probability 𝑝(𝑆) with 𝛾 = 1.0 for Δ𝑡 =
8ms and 𝑑E = 400µm.C: Same as A for 𝛾 = 1.5.D: Same
as B for 𝛾 = 1.5. E: Same as A for 𝛾 = 2.0. F: Same as
B for 𝛾 = 2.0. Increasing 𝛾 results in a smaller electrode
field-of-view, and removes the cut-off for 𝑆 ∼ 𝑁E. 85

Figure 4.10 Effect of changing the electrode contribution ∼ 1/𝑑−𝛾

of a spiking neuron at distance 𝑑, for different network
topologies and 𝑑E = 200µm.Dynamic states are Subcrit-
ical (left), Reverberating (center) and Critical (right).
Topologies are Local (top), Orlandi (middle) and Ran-
dom (bottom). Local corresponds to the topology used
in the main paper, Orlandi corresponds to the model de-
scribed in [233], andRandomcorresponds to a completely
random topology. Increasing𝛾 (decreasing electrode FOV)
results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-
sampling becomes more spike-like. Bin-size for all distri-
butions is Δ𝑡 = 4ms. 86

Figure 4.11 Effect of changing the electrode contribution ∼ 1/𝑑−𝛾

of a spiking neuron at distance 𝑑, for different network
topologies and 𝑑E = 400µm.Dynamic states are Subcrit-
ical (left), Reverberating (center) and Critical (right).
Topologies are Local (top), Orlandi (middle) and Ran-
dom (bottom). Local corresponds to the topology used
in the main paper, Orlandi corresponds to the model de-
scribed in [233], andRandomcorresponds to a completely
random topology. Increasing𝛾 (decreasing electrode FOV)
results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-
sampling becomes more spike-like. Bin-size for all distri-
butions is Δ𝑡 = 8ms. 88
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Figure 4.12 Avalanche-size distributions 𝑝(𝑆) dependence on time-
bin size Δ𝑡 for 𝑑E = 200µm. Coarse-sampled (left) and
sub-sampled (right) results from an array of 64 virtual
electrodeswith time bin sizes between 2ms ≤ Δ𝑡 ≤ 16ms.
Dynamics states are Poisson (A-B), Subcritical (C-D), Re-
verberating (E-F) and Critical (G-H). Distributions are
fitted to 𝑝(𝑆) ∼ 𝑆−𝛼. Insets:Dependence of 𝛼 on Δ𝑡, fitted
as 𝛼 ∼ Δ𝑡−𝛽. Fit values are shown in Table. 4.2. 89
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I N TRODUCT ION

”The first principle is that you must not fool yourself — and you are the
easiest person to fool.” - Richard Feynman

The brain is said to be the most complex machine in the known universe. It
is an organ made of billions of functional units (the neurons), which controls
all aspects of motor function. It is also capable of processing, recording, and
learning from new information. The mammoth task of understanding how the
brain works is the object of study of Neuroscience.

The study of the brain is interdisciplinary, done by different fields at differ-
ent scales. At the lowest scales, Biochemistry works to unveil the mechanisms
behind the molecular machinery that supports brain function. At the other end
of the scale, Psychology and Medicine try to link neuronal activity of the brain
as whole to cognition and behavior.

Somewhere in the middle, concepts from Physics have increasingly been ap-
plied to understand brain dynamics. One focus is on collective behavior at large
(> 103 neurons) scales: how do neurons propagate information? How is this
information integrated at the various scales of neuronal activity? Can simple
models and a few key mechanisms be useful in understanding it?

For around two decades1, it has been argued that brain activity operates in
a critical state, poised between functionally different phases. This is called the
criticality hypothesis, and states that by being at this particular dynamic state
the brain can benefit from themaximization of many functional properties [1, 3–
6]. The hypothesis is controversial, however, with some of its signature observ-
ables shown to be obtainable with non-critical (such as subcritical) models [7–
9]. Nevertheless, criticality remains an important framework to understand how
the brain can propagate and process information.

An issue that arises when trying to assess criticality in biological systems is
sampling. In principle, experimentally studying collective phenomena (such as
criticality) requires recording the entire system in question. Any less, and mea-
surements can be subject to sampling bias, which can lead to an incorrect assess-
ment of the dynamic state of the system. As the mammalian brain is made of
millions to billions of neurons [10], such complete recordings are currently im-
possible.

Current electrophysiological techniques impose heavy restrictions on both (i)
fraction of the system that is sampled, and (ii) sampling scheme used. While
state-of-the-art methods can record activity of up to ∼ 104 neurons under spe-

1 Initial experimental evidence on criticality in neuronal systems dates from the early 2000’s [1],
while theoretical arguments have been made as early as 1994 [2].

1



2 INTRODUCT ION

Figure 1.1: Subsampling of neuronal activity. While the brain is made of billions of
neurons (left) we can only measure the activity of at most a few thousand
neurons (right). This sampling effect constrain our understanding of collec-
tive behavior in the brain, and can bias the assessment of its dynamics. Visu-
alization created with the TREES toolbox [11].

cific settings, it still represents an extremely small fraction (< 0.01%) of the neu-
rons in the mammalian brain. In Fig. 1.1 we show a representation of neuronal
subsampling. Moreover, neuronal networks are extremely heterogeneous both
in function and topology [185]. Thus, when analyzing neuronal activity, great
care is necessary both regarding the accuracy of the measured properties, and
how they generalize to different areas from the ones observed.

In this Thesis we explore how sampling effects can bias the assessment of the
dynamic state of neuronal networks. We start by introducing important back-
ground information in Chapter 2, which includes extensive reviews of the exper-
imental results on criticality (Sec. 2.5), and the fundamentalmodel used to study
it (Sec. 2.4). In Chapter 3 we explore sampling bias in different systems, show-
ing how it can bias their observables. In particular, in Sec. 3.3 we demonstrate
how sampling bias can explain the variability in neuronal spectra observed in
different experiments. In Chapter 4 we develop a model where neural activity is
sampled in two different ways, and show that this unifies contradictory results
in the literature regarding criticality in the brain. Lastly, in Chapter 5 we offer
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a discussion and outlook on the importance of sampling for future research of
criticality in Neuroscience.





2
CR I T I CAL I TY IN PHYS I C S AND NEUROSC I ENCE

In this chapter we introduce the fundamentals to understand the relationship
between critical phenomena in Physics and Neuroscience. We first introduce in
Sec.2.1 the concept of criticality, and in Sec. 2.2 which functional properties are
associated with the critical state. We then summarize in Sec. 2.3 important con-
cepts regarding criticality from the point of view of statistical physics. We de-
scribe in detail the branching process in Sec. 2.4, which is widely used to model
criticality in Neuroscience. Lastly, in Sec. 2.5 we review the literature of critical-
ity in the context of neuronal avalanches, summarizing key papers and ideas
that formed our current understanding in the field.

2.1 WHAT I S CR I T I CAL I T Y ?

Many systems in nature have different phases, for instance the states of matter.
As certain system parameters change (e.g. temperature), the system undergoes
a phase transition, identified by changes in its properties. Criticality refers to the
state of a system poised at this precise critical point that separates the two (or
more) phases [12, 13].

Different systems may have phases of different nature. For instance, a dynam-
ical system may have a phase with ordered dynamics and another with chaotic
dynamics, with an ”edge of chaos” critical state separating them. In another sys-
tem, the phase transition may be between an absorbing state (where dynamics
dies out) and an active state (where it is self-sustaining).

Phase transitions can also be continuous or abrupt. In a continuous (also called
“second order”) phase transition, the quantity measured (e.g. level of synchro-
nization or activity) varies smoothly. In an abrupt (or “first order”) phase tran-
sition it changes in a discontinuous manner from one phase to the other.

As an experimental example of a continuous phase transition, let us consider
ferromagnetic materials. Below a critical temperature 𝑇𝑐 (called the Curie point)
these materials have innate magnetism (ferromagnetism), which disappears for
𝑇 > 𝑇𝑐 (paramagnetism). This transition is continuous, since the magnetization
𝑀 of themagnet goes smoothly to zero as 𝑇 → 𝑇𝑐. It is also an example of a order-
disorder1 transition: for low temperatures, themagnetic spins in thematerial are
aligned (order) and thus there is a netmagnetization. For high temperatures the
spins are not aligned and thus there is no resulting magnetization. See Fig. 2.1A
for an example of materials with different 𝑇𝐶.

1 This phase transition is related to, but different from the stable-chaotic transition mentioned ear-
lier. Here the system is in an equilibrium state, while the earlier transition is about how the dy-
namics evolve over time.
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A B

active phasequiescent phase

Figure 2.1: Continuous phase transitions in experiments and models. A. Ferromag-
netic materials have different critical temperatures 𝑇𝐶 at which magnetiza-
tion vanishes. Adapted from [16].B. Quiescent and active phases of a contact
process, with a critical point 𝜆 = 1.

As a representative system, consider the contact process (CP) model [5, 14].
In this process, active units become quiescent at rate 𝜇, and they can also acti-
vate quiescent ones at rate 𝜆. Assuming homogeneous interaction between units
(well-mixed dynamics) activity is created at a rate 𝜆𝜌(1 − 𝜌), and disappears at
a rate 𝜇𝜌. If we set 𝜇 = 1 for simplicity, the evolution of the fraction of active
nodes 𝜌(𝑡) is then given by:

̇𝜌(𝑡) = 𝜆𝜌(𝑡) [1 − 𝜌(𝑡)] − 𝜌(𝑡) (2.1)

Eq. 2.1 has a critical (bifurcation) point at 𝜆𝑐 = 1: since 𝜌 ∈ [0, 1], if 𝜆 < 1 then
̇𝜌 < 0, and activity will always decay. If 𝜆 > 1 it becomes possible to have stable,

non-zero activity. Solving Eq. 2.1 for ̇𝜌 = 0 we find that this stable fraction of
active nodes is given by 𝜌 (𝑡 → ∞) = 1 − 1/𝜆. In Fig. 2.1B we show the resulting
phase diagram for the CP model.

The CP model is useful in modeling initial epidemic spreading, where it is
known as the susceptible-infected-susceptible (SIS) model. From Eq.2.1 we can
derive how fast a disease spreads during an outbreak: for small 𝜌 we have ̇𝜌 ≈
(𝜆 − 1) 𝜌 and thus 𝜌(𝑡) ∼ 𝑒(𝜆−1)𝑡. In other words, being supercritical (𝜆 > 1)
results in spreading that is initially exponential. This is observed in real-world
epidemics, such as the recent COVID-19 pandemic [15].

Besides separating phases, the critical point is usually associated with many
interesting properties. For instance, for the magnetic materials described above,
𝑇𝐶 is the point of maximum magnetic susceptibility, i.e. how much the material
responds to an external magnetic field. The same happens for the CP model: at
𝜆𝑐 = 1 the response to an external perturbation is maximal. In Sec. 2.2 we go in
detail into the properties maximized at criticality.

The study of critical phenomena in Physics, especially of continuous transi-
tions, is vast. Importantmodels include the Isingmodel, used to explain themag-
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netization phase transition of Fig. 2.1A, and the directed percolation (DP) class
of models (which include the CP model), used to describe activity spreading.
Following pioneering work by Kadanoff and others in the 1960’s [17, 18], many
useful concepts where developed. These include universality, scaling, and the
renormalization group (RG) transform, and extensions such as self-organized
criticality (SOC). In Sec. 2.3 we explore these concepts and models in more de-
tail.

2.2 FUNCT IONAL PROPERT I E S O F CR I T I CAL I T Y

2.2.1 Correlation length

Much of the interest in studying critical phenomena, in particular in the con-
text of neuronal dynamics, comes from the observables associated with a critical
state. These are quantities (such as the magnetization 𝑀 in Fig. 2.1A) that are
particularly important in describing the state of the system. In particular, critical
phenomena is associated with long-range spatiotemporal interactions [12]. This
manifests in the form of a diverging correlation length in the infinite-size limit,
and maximal correlation for finite systems.

Correlation functions offer an alternative view into what is criticality. A di-
verging correlation function means that there is no particular scale to interac-
tions: units are correlated over infinite time and/or space, even if they are di-
rectly connected to only a few other units. This happens because, while the
strength of interactions between two units decay with distance, the multitude
of paths connecting those units increases. The point where these two effects bal-
ance each other results in maximum correlation, and it is the critical point. Thus,
an alternative way to look for criticality is to search for parameter values that
maximize correlation functions.

Long spatiotemporal correlations are important in the context of neuronal ac-
tivity, as they imply coordinated behavior between the neurons. Let us consider
spatial and temporal correlations separately: Long spatial correlations are nec-
essary to coordinate millions of neurons across large brain areas. They can be
quantified by measuring for instance pairwise spike correlations between neu-
rons [19]. Long temporal correlations, on the other hand, are necessary to main-
tain long-lasting memories in the spiking dynamics. They can be quantified by
measuring the autocorrelation function (ACF) of neuronal populations.
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The ACF of a stationary process2 is the cross-correlation between the process
and itself at different time lags. For a discrete timeseries 𝐴(𝑡) starting at 𝑡 = 1,
the ACF 𝐶(𝑡) can be estimated from

𝐶(𝑡) = 1
(𝑛 − 𝑡)𝜎2

𝑛−𝑡
∑
𝑡0=1

(𝐴(𝑡0) − 𝜇)(𝐴(𝑡0 + 𝑡) − 𝜇) (2.2)

where 𝜇 = 𝑛−1 ∑𝑡 𝐴(𝑡) is the mean, 𝜎2 = 𝑛−1 ∑𝑡(𝐴(𝑡) − 𝜇)2 is the variance and
𝑛 is the length of the timeseries. It follows that 𝐶(𝑡) ∈ [−1, 1], and 𝐶(0) = 1. In
some systems, such as the branching process with drive described in Sec. 2.4,
the ACF has an exponential form:

𝐶(𝑡) ∼ 𝑒−𝑡/𝜏 (2.3)

in that case, the parameter 𝜏 is known as the autocorrelation time, or intrinsic
timescale, of the dynamics.

2.2.2 Avalanche dynamics

Inmany systemswith critical dynamics, activity propagates inwell-definedbursts,
inter-spaced byperiods of silence. This property is knownas separation of timescales,
and the spatiotemporal clusters of activity are called avalanches. The analysis of
avalanche dynamics is concernedmainly with two properties: (i) the avalanche
size 𝑆, which is the number of system units activated, and (ii) the avalanche
duration 𝐷, which is the total time duration of the avalanche. An important sig-
nature of criticality is that the probability distributions of 𝑆 and 𝐷 follow power-
laws:

𝑝(𝑆) ∼ 𝑆−𝛼 (2.4)

𝑝(𝐷) ∼ 𝐷−𝛽 (2.5)

where 𝛼, 𝛽 > 0 are known as the critical exponents of the dynamics. Another ob-
servable of avalanchedynamics is the average avalanche size ⟨𝑆⟩(𝐷) for avalanches
of a given duration 𝐷. At criticality, it also follows a power-law:

⟨𝑆⟩ ∼ 𝐷𝛾 (2.6)

with 𝛾 > 0 . The exponents 𝛼, 𝛽 and 𝛾 are called critical exponents, and follow a
scaling law:

𝛽 − 1
𝛼 − 1 = 𝛾 (2.7)

2 A stationary process is one where the probability distribution is time-independent. Stationarity
is a requirements for most time-series analyses, and care must be taken when dealing with non-
stationary processes.
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They are signature of the universality class of the dynamics – the category ofmod-
els it belongs to (see Sec. 2.3.1 for more details). Moreover, the average temporal
profile at criticality follows a universal scaling function F . For a given avalanche
duration 𝐷, the average activity 𝑠(𝑡, 𝑇) at any time 𝑡 within the avalanche is given
by:

𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1F (𝑡/𝐷) (2.8)

Thus, rescaling 𝑠(𝑡, 𝐷) → 𝑠(𝑡, 𝐷)/𝐷𝛾−1 and 𝑡 → 𝑡/𝐷 results in a data collapse of
avalanches of all durations.

The interest in the fact that 𝑝(𝑆) and 𝑝(𝐷) follow power-laws is that they are
heavy-tailed probability distributions and are scale-free: there is no characteristic
scale to the distribution (contrasting to e.g. Eq. 2.3), and rescaling the variable
𝑥 → 𝑐𝑥 produces no change. The power-law is the only function with this prop-
erty.

In the context of brain dynamics, heavy-tailed distributions (which also in-
clude e.g. lognormal distributions) are linked to a number of functional prop-
erties. For instance, response to sensory stimuli depend logarithmically on the
amplitude of the signal [20]. More importantly, power-law avalanche distribu-
tions describe a particular mode of activity: most avalanches of activity are very
small, but eventually very large avalanches can happen and dramatically affect
the system.

It is important to note that power-laws are not unique and obligatory signa-
tures of criticality. On one hand, it has been shown that apparent power-laws
can emerge from non-critical dynamics. For instance, a sum of exponential dis-
tributions with properly-selected parameters can look like a power-law [3, 7,
21]. On the other hand, sampling bias can make power-law distributions from
critical systems appear non-power-law [22]. This is explored in detail in Chapter
4.

The focus on the avalanche probability distributions leads to an important
technical challenge: fitting power-law distributions to empirical data. Identifi-
cation and fitting of power-law distributions depends crucially on the distribu-
tion’s tail, which has orders of magnitude less samples than the beginning. Con-
siderable efforts have been made in the development of methods to validate
power-law fits of data [23–25]. In particular, it has been shown that applying
log to 𝑓 (𝑥) = 𝑥𝛼 and linearly-fitting log 𝑓 (𝑥) = 𝛼 log 𝑥 is unreliable [26]. The
accepted standard for fitting power-laws is to use maximum-likelihood estima-
tor (MLE) methods, and use Kolmogorov-Smirnov statistics for validation [23].
Furthermore, an often used rule of thumb is that distributions should span at
least 2 orders of magnitude to be candidates for power-law fitting [27].

Despite the technical difficulties, the observation of power-laws remain an
important indicative that the system in question has dynamics with long spa-
tiotemporal correlations.
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2.2.3 Dynamic range and dynamical repertoire

In many models, criticality also maximizes other properties besides correlation
length, some of which are considered very useful for the transmission and pro-
cessing of neuronal activity. It maximizes the dynamic range, which is the range
of input magnitude to which a system responds with discernible response [28,
29]. Many functional regions of the brain need to respond to stimuli with a wide
range of intensities, making a maximal dynamic range a desirable property3.

Criticality also maximizes measures of the variability of spatiotemporal pat-
terns in networks, also called the dynamical repertoire. These include maximizing
the number of metastable states in branching networks [30], and the number
of dynamical attractors in Boolean [31] and integrate-and-fire networks [32].
Experimentally, analysis of resting state networks found them to be poised at
criticality, modeled with both with simple threshold-based [33] and complex
integrate-and-fire dynamics [34].

2.2.4 Complexity and computational properties

Criticality has long been conjectured to be important in the context of compu-
tation [35, 36]. In particular, the critical point between ordered and chaotic
dynamics (edge of chaos) has been shown to provide maximal computational
power4. This was observed first in cellular automata models [36, 37], and sub-
sequently in logistic maps [38] and recurrent neuronal networks [39–41].

Information-theoretic measures [42, 43] also point towards criticality offer-
ing maximal information transmission capabilities. Mutual information was ob-
served to be maximized at criticality in Boolean networks [44], threshold net-
works [39], and branching networks [3]. The same was observed for transfer
entropy in the Ising model [45], and recurrent [46] and Boolean [47] net-
works.

As we can see, the appeal of criticality comes not from a single model or prop-
erty, but from the observation that it maximizes many properties in many dif-
ferent models. This has triggered a heated debate about the generality of the
concept of criticality, particularly in the context of computation [38, 48, 49]5.

In the context of neuronal activity, the main question is whether these prop-
erties associated with critical dynamics are observed in recordings of neuronal
activity. Before delving into it, we first explore in more detail the concept of
criticality, and then define the branching process, widely used to study critical
phenomena in neuroscience.

3 These include the auditory, visual and olfactory systems.
4 Like ”criticality”, ”computation” can be a loaded term. Here it means the act of transforming an

input into an output, following some algorithm. Computational power refers to the number of
such transformations a system can perform.

5 This debate is maybe best-exemplified by Per Bak’s 1996 book about self-organized criticality,
titled ”How Nature Works” [50].
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2.3.1 Key concepts

In the context of continuous phase transitions, the critical state is defined as the
state where a system undergoes a phase transition, measured by a chosen order
parameter, with respect to some control parameter. In otherwords, in order to rigor-
ously define a critical state, we must specify: i) a system, ii) some quantity that
encapsulates the collective behavior of the system (the order parameter) and
iii) some variable 𝑥 that can cause this behavior to abruptly change (the control
parameter). The value 𝑥 = 𝑥𝑐 at which this abrupt change occurs is called the
critical point. Comprehensive texts on statistical mechanics with an emphasis
on critical phenomena include [13, 51, 52].

Precise definition of criticality requires careful study of the system in question.
In particular, there is no establishedmethod to find an appropriate order param-
eter of a critical system, and even for simple systems such definition can be tricky
[13, 53]. Nevertheless, it was observed that many models share similarities, es-
pecially around the critical point. This resulted in one of the biggest appeals of
critical phenomena: universality. This is the notion that, near the critical point,
the collective behavior is largely independent of details, and all models within
the same universality class have the same behavior. Intuitively, the concept is
that as the system moves towards the critical point, most degrees of freedom asso-
ciatedwithmodel details vanish, and only the ones that identify the universality
class remain. Thus, it underlies a certain hierarchy of mechanisms, with some
(the ones defining the universality class) beingmore important than others (the
ones that only matter away from criticality).

Mathematically, the universality class is identified by the critical exponents of
themodel [17]. These are exponents of various quantities (observables) that scale
as power-laws around the critical point. In other words, if 𝜒 is such an observ-
able6, and 𝛾𝜒 is its respective critical exponent, then as the control parameter
𝑥 → 𝑥𝑐 we find that 𝜒 scales as

𝜒 ∼ |𝑥 − 𝑥𝑐|−𝛾𝜒 (2.9)

Moreover, the critical exponents respect a set of equalities — known as scaling
laws — that tie them together (such as Eq. 2.7).

The last key concept in critical phenomena is that of the renormalization
group (RG), also known as coarse-graining [12, 13, 51]. Numerically, it offers
a recipe to obtain critical exponents. More importantly, renormalization deals
with how the dynamics of a system is observed at different scales. It describes
a number of techniques that maps a system to a version of itself with micro-
scopic degrees of freedom removed, effectively shrinking it. For instance, the
block spin renormalization [54, 55] aggregates units into “super units”, remov-

6 Such as mean cluster size in directed percolation, or magnetic susceptibility in the Ising model.
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Ising model Directed percolation

Bak-Tang-Wiesenfeld model

Figure 2.2: Models with critical dynamics. A: Spontaneous magnetization 𝑚(𝑇) of the
Ising model with one to three dimensions (using 𝑘𝐵 = 𝐽 = 1) in the ther-
modynamic limit. The blue curve (3D) corresponds to the mean-field (MF)
solution (Eq. 2.12). B: Time evolution of the 1D directed (bond) percolation,
with probability 𝑃 of a bond existing and critical point 𝑃𝑐. Reproduced with
permission from [56]. C: Visualization of the Bak-Tang-Wiesenfeld model
on a 256 × 256 grid after dropping 128M sand grains in the center. Colors
correspond to number of grains: white is 0, green is 1, blue is 2 and black is
3. Figure generated with the Interpile toolbox [57].

ing the interactions between them and reducing system size. Through this proce-
dure, observables of the system are changed. The exception is if the dynamics is
self-similar, and the observables have the same structure in all scales (known as
scale-invariance). This happens only at the critical point. Thus, only at criticality
coarse-graining produces invariant observables.

In order to make those concepts more clear, models must be introduced. In
Sec. 2.3.2 we describe a number of classic models of critical phenomena, and in
Sec. 3.2 we explain the coarse-graining of the Ising model. There, we show the
type of bias that can emerge if coarse-graining is done incorrectly.
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2.3.2 Models with critical dynamics

The phenomena of criticality has been explored in a wide variety of models in
Physics. Besides being divided into abrupt (first-order) and continuous (second-
order) transitions, another important categorical distinction is between equilib-
rium and non-equilibrium dynamics [14, 58].

In an equilibrium phase transition the system is fully described by a time-
independent ensemble statistics: probabilities of each configuration of states oc-
curring are fixed, and the system may be critical depending on a tunable order
parameter (such as temperature). Even so, a dynamic model (such as Glauber
dynamics [59] for the Ising model) is sometimes used to generate the ensemble
statistics.

In systems with non-equilibrium phase transitions, however, the ensemble
of states evolves with time. More than that, time is treated as a degree of free-
dom, in equal footingwith spatial dimensions7. Besides beingmore realistic for a
wide number of applications, non-equilibrium systems can have more complex
dynamics and different types of phase transitions, due to their extra degree of
freedom.

One important type of non-equilibrium universality class is of systems with
absorbing states. Once the system reaches this state (for instance, all units being
quiescent) it cannot leave. Thus, it defines a phase transition between an active
and a frozen state. The most prominent universality class with an absorbing
transition is the Directed Percolation (DP) class, which incorporates both the
directed percolation model and other models explored in this Thesis.

In the followingwedescribe a number of classic equilibriumandnon-equilibrium
models. Each illustrates an important concept: the Ising model exemplifies the
role of dimensionality in critical phenomena, and its coarse-graining is well un-
derstood.Directedpercolation is themost established example of a non-equilibrium
phase transition. Boolean networks exemplify the role of topology by having a
phase transition defined by topological (network) properties. Finally, the Bak-
Tang-Wiesenfeld model helps introduce the concept of self-organized criticality.

2.3.2.1 Ising model

The Ising model is one of the most classic models in Physics. It describes the
collective behavior of interacting magnetic spins with two discrete orientations
𝑠𝑖 = ±1, and has been applied to problems ranging from neuroscience to the
stock market to disease spreading [60–62]. In its simplest form8, it is given by
the Hamiltonian 𝐻( ⃗𝑠) = ∑⟨𝑖,𝑗⟩ 𝑠𝑖𝑠𝑗, where ⟨𝑖, 𝑗⟩ denotes all pairs of nearest neigh-

7 A system with N spatial dimensions is then said to be a ‘N+1’ system.
8 The full Hamiltonian of the Ising model includes a coupling constant 𝐽. For simplicity, here we

set 𝐽 = 1.
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boring spins. The probability of observing the ensemble ⃗𝑠 is given by the Boltz-
mann distribution

𝑃( ⃗𝑠, 𝑇) = 1
𝑍𝑇

𝑒−𝐻( ⃗𝑠)/𝑘𝐵𝑇 (2.10)

where 𝑇 is the temperature of the system, 𝑘B is the Boltzmann constant (here,
𝑘B = 1) and 𝑍𝑇 is the partition function that normalizes the distribution. The
mean normalized magnetization 𝑚(𝑇) = 1

𝑁 | ∑𝑖 𝑠𝑖| describes the collective mag-
netization of the system: if 𝑚(𝑇) > 0 then spins have a preferential orientation,
and the system has innate (ferro)magnetism.

The behavior of the Ising model depends both on 𝑇 and the topology of the
system. The one-dimensional Ising model was first solved by Ernest Ising, who
has shown thatmagnetism requires the application of an externalmagnetic field.
In other words, the 1D Ising model has 𝑚 = 0 and no phase transition.

The two-dimensional Ising model consists of spins arranged on a square lat-
tice9. Its analytical solution is considerably more sophisticated, and was first
shown (famouslywithout proof) byOnsager [63]. As the temperature𝑇 reaches
the critical temperature 𝑇𝑐 = 2/ln(1 + √2), the system undergoes a continu-
ous (second-order) phase transition between a disordered spin configuration
(𝑇 > 𝑇𝑐) and an ordered state of aligned spin orientations (𝑇 < 𝑇𝑐). Many
observables diverge at 𝑇 = 𝑇𝑐 in the thermodynamic limit (𝐿 → ∞), such as
correlation length, specific heat and susceptibility [13, 55]. The magnetization
of the 2D Ising model is given by:

𝑚2𝐷(𝑇) = (1 − sinh−4(2/𝑇))
1/8

(2.11)

For 3+ dimensions no analytical solution is known. Instead, understanding
of the system comes from simulations and from the mean field solution of the
model. The mean-field solution shows that the system has a phase transition at
temperature 𝑇𝑐 = 𝑞, where 𝑞 is the number of neighbors of a spin (e.g. 𝑞 = 4 for
the 2D square lattice and known as the coordination number). While the mean-
field solution is incorrect for the 1D case and off for the 2D case (𝑇𝑐 = 1/ln(1 +
√2) ≈ 2.3 instead of 4), it becomes increasingly accurate as the dimensionality
increases. The mean-field spontaneous magnetization 𝑚𝑀𝐹 of the Ising model
for 𝑇 < 𝑇𝑐 is given implicitly by

𝑇 = 2𝑞𝑚𝑀𝐹

log(1+𝑚𝑀𝐹
1−𝑚𝑀𝐹

)
(2.12)

In Fig. 2.2A we compare the (analytic) magnetization of the Ising model in the
1D and 2D cases with the mean-field solution for the 3D case (𝑞 = 6). As we
can see, behavior is considerably different: both critical temperature and shape

9 The solutions for the 1D and 2D Ising model are taken in the thermodynamic (infinite size) limit.
Finite systems are subject to finite-size effects and display different solutions.
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Figure 2.3: Directed Percolation. A. Representation of the directed bond percolation
process on a 2D diagonal lattice, with time 𝑡 and number of active sites 𝑁(𝑡).
B.Average number of active sites ⟨𝑁(𝑡)⟩ as a function of the percolation prob-
ability 𝑃 with activity started in a single site. For 𝑃 < 𝑃𝑐 ≈ 0.6447 we find
that ⟨𝑁(𝑡)⟩ decreases exponentially. For 𝑃 = 𝑃𝑐 it increases as a power-law
⟨𝑁(𝑡)⟩ ∼ 𝑡𝜃 with 𝜃 ≈ 0.308 (sublinear, traced line). For 𝑃 > 𝑃𝑐 it increases
superlinearly. Reproduced with permission from [58].

of 𝑚(𝑇) depend on dimensionality. Thus, we conclude that changing the spatial
embedding can result not only in numerical changes (since 𝑇𝑐 = 𝑞 depends on
the number of dimensions) but dramatic changes as well — such as creating a
phase transition for 2+ dimensions.

2.3.2.2 Directed percolation

TheDirectedPercolation (DP)universality class encompassesmanynon-equilibrium
models with absorbing phase transitions. In particular, both the contact process
(CP)mentioned in Sec. 2.1 and the branching process (described in detail in Sec.
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2.4) are members of this class. Fundamentally, the DP models how activity can
spread — percolate — between units in a given topology [58]. As such, mod-
els of this class are widely used to describe spreading processes from disease
spreading in populations to activity spreading in the brain10.

In its simplest realization11, directed percolation is made of sites placed on a
2D diagonal lattice of size 𝑁 × 𝐿 with directed links from top to bottom (see Fig.
2.3A for a graphic representation). Links between sites may exist independently
with probability 𝑃. The question is: how likely that a path exists from top to bottom,
as a function of 𝑃? This model can also be interpreted in a dynamical way as a
1D array of 𝑁 sites that at each timestep (row of the lattice) may activate its 2
nearest neighbors independently with probability 𝑃. In this case, the question
becomes: how likely that activity survives after 𝐿 timesteps, as a function of 𝑃?

It turns out there is a phase transition involved.At a critical percolation threshold
𝑃𝑐 the probability of the system reaching this absorbing state quickly changes
from 0 to 1: if 𝑃 < 𝑃𝑐, activity will very likely not percolate to the end, while
𝑃 > 𝑃𝑐 almost guarantees that it does, for any finite 𝐿. See Fig. 2.2B for a visual-
ization of the percolation process for long durations, and Fig. 2.3B for a plot of
the evolution of the number of average active sites ⟨𝑁(𝑡)⟩. For 𝑃 < 𝑃𝑐 we observe
that ⟨𝑁(𝑡)⟩ decreases exponentially, while for 𝑃 > 𝑃𝑐 it increases superlinearly.
For 𝑃 = 𝑃𝑐 we find that ⟨𝑁(𝑡)⟩ increases, but following a power-law ⟨𝑁(𝑡)⟩ ∼ 𝑡𝜃

with 𝜃 ≈ 0.308. Thus, activity increases slowly.
Interestingly, the numerical value of 𝑃𝑐 is not universal, and depends on lat-

tice structure and dimensionality. For the diagonal lattice exemplified it is given
by 𝑃𝑐 ≈ 0.6447. A triangular lattice has the same dimensionality (1+1), but one
extra neighbor (coordination number 𝑞 = 3 instead of 𝑞 = 2). This results in
a smaller percolation threshold 𝑃𝑐 ≈ 0.4780 [66]. A simple cubic lattice, on
the other hand, has the number of neighbors (𝑞 = 3) as the triangular lattice
but higher dimensionality (2 + 1). This results in a lower percolation threshold
𝑃𝑐 ≈ 0.3822 [67]. This is tied to the long-range correlations that emerge at crit-
icality: due to them, higher-order features of the topology become important,
and impact the phase transition.

2.3.2.3 Boolean and Threshold Networks

Boolean Networks are networks whose node’s activity depends on a Boolean
function of the input. For instance, a node may be active if the sum of its inputs
is even, and inactive if it is odd. Nodes only transmit binary signals between
each other, and the dynamics is deterministic.

10 Interestingly, while directed percolation has been studied for many decades [64], experimental
evidence for systems displaying precisely the directed percolation critical behavior is much more
recent [65].

11 DP models can be categorized into bond percolation and site percolation, depending whether the
dynamics happens between the units (sites) or between their bonds. Here we focus on bond
percolation.
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Figure 2.4: Random Threshold Network with inhibition. A. Parameter space for the
normalized average activity 𝐴 of RTNs with degree 𝐾 and fraction of posi-
tive links 𝐹+. B. Same for the sensitivity to perturbation, given by the Ham-
ming distance 𝐻. The white lines corresponds to critical dynamics (𝐻 = 1).
Reproduced from [77].

In a Random Boolean Network (RBN) the function is chosen at random from
a set of Boolean functions, and connected on a network with some underlying
topology. RBN’s are used to model a wide variety of systems, in particular ge-
netic regulatory networks [68–71].

Since the signal transmitted in a RBN is binary, the parameters that can be
tuned are related to the topology of the network. In its simplest form, an RBN
is made of nodes each connected to 𝐾 neighbors, and thus assigned a random
Boolean function that takes 𝐾 inputs. In this case 𝐾𝑐 = 2 defines a phase tran-
sition between stable and chaotic dynamics. This transition is defined by the
average effect of perturbing (changing the state) a single node in the network —
the number of nodes that changed the state they would have due to the pertur-
bation. This is encoded by the Hamming distance 𝐻 between the perturbed and
unperturbed states. If 𝐻 > 1, perturbations grow geometrically, and the system
is chaotic. If 𝐻 < 1 they vanish quickly, and the system is stable. At 𝐻 = 1 we
have criticality.

While Boolean functions make sense in the context of gene regulation, many
systems with simpler units are unlikely to perform such vast array of compu-
tations 12. In particular, many systems (such as neurons) have threshold-based
dynamics. In aRandom Threshold Network (RTN) all nodes have a threshold func-
tion, and are activated if the sum of inputs is above a threshold ℎ [72–74]. The
function can be either a step function (outputs 0,1) or a sign function (outputs
±1). At criticality, RTNs have interesting properties that can differ from RBNs
[72, 75, 76].

12 The number of Boolean functions of 𝐾 variables is 22𝐾 , and thus grows very quickly with 𝐾.
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A number of variants of the RTN dynamics have been developed. Probabilis-
tic dynamics was shown to generate ceaseless dynamics [78], asynchronous
update of the node states changes attractor structure [79], and self-regulation
(when the input is exactly at the threshold) can add long-term temporal corre-
lations [72, 74]. Changing the topology by adding a community structure also
enriches the dynamics [79, 80].

Inspired by inhibition in the brain, we’ve shown [77] that a varying balance
between inhibition and excitation creates vertical and horizontal critical lines
(𝐻 = 1), allowing criticality for 𝐾 > 2. By varying both 𝐾 and the fraction 𝐹+
of links that are positive, we show that it is possible to tune both the level of
activity in the network and sensitivity to perturbation. See Fig. 2.4 for the phase
diagram of this model.

2.3.2.4 Bak–Tang–Wiesenfeld model

The Bak-Tang-Wiesenfeld model (BTW, also known as the Abelian sandpile
model) is another very famous model with critical dynamics [81]. It is best-
known as the model that introduced the concept of self-organized criticality. Its
dynamics is inspired by the toppling of sand grains in a sandpile: each point of
the sandpile balances a number of sand grains, and topples if the pile gets too
tall. In its simplest version, units in the model are spread in a 𝑁 × 𝑀 lattice and
each site at position (𝑥, 𝑦) is associated with an (initially random) integer value
𝑧(𝑥, 𝑦) ∈ [0, 3]. If during the dynamics 𝑧(𝑥, 𝑦) ≥ 4, the site ”topples”, losing 4
units and sending one to each of its neighbors. Mathematically, the dynamics is
updated synchronously with

𝑧(𝑥, 𝑦) → 𝑧(𝑥, 𝑦) − 4
𝑧(𝑥 ± 1, 𝑦) → 𝑧(𝑥 ± 1, 𝑦) + 1
𝑧(𝑥, 𝑦 ± 1) → 𝑧(𝑥, 𝑦 ± 1) + 1

(2.13)

for every site 𝑧(𝑥, 𝑦) > 3. Dynamics starts by adding one unit to a random site,
and updating it following Eq. 2.13 (i.e. letting the avalanche run) until no site
has more than 3 units.

This unit-adding dynamics drives the system towards a critical distribution
of units, with a number of sites at the edge of toppling (𝑧(𝑥, 𝑦) = 3). In Fig.
2.2C we show the distribution of a 256×256 system after toppling 128M units in
the center of the grid13. Note the apparent self-similarity of the state, with rich
patterns at various scales.

In this critical state, adding a single unit can result in large avalanches toppling
sites throughout the entire system. The avalanche dynamics results in the power-
laws described in Sec. 2.2.2, with an avalanche size distribution 𝑝(𝑆) ∼ 𝑆−𝛼 and
an avalanche duration distribution 𝑝(𝐷) ∼ 𝐷−𝛽. In the case of the BTW model,

13 The BTWmodel in Fig. 2.2C is open, in the sense that units sent to outside the system are removed
and do not accumulate at the borders.
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these exponents are 𝛼 = 1.293 and 𝛽 = 3/2 [82]. Thus, large avalanches are
more common in the BTW model than in the branching process studied in Sec.
2.4.

2.3.3 Extensions of criticality

While criticality refers to specific values of the control parameter of a system
with a second-order phase transition, the term became associated with other
phenomena which doesn’t necessarily fit into this definition. In this section we
briefly go over two of its most interesting extensions: self-organized criticality
and Griffiths phases.

2.3.3.1 Self-organized Criticality

As seen in Sec. 2.2, many properties are maximized/diverge at the critical point.
However, this effect is not linear. For instance, in the branchingmodel of Sec. 2.4
the observable 𝜏 (the autocorrelation time) is related to the control parameter
𝑚 (the branching parameter) by 𝜏 ∼ −1/ log𝑚. Thus, a small change around
𝑚 ≈ 1 produces a large resulting change in 𝜏. In other worlds, for a system to be
critical it requires fine parameter tuning.

The concept of Self-Organized Criticality (SOC) solves this issue by adding
some topological or dynamical mechanism that leads the system towards this
critical point without the need to fine-tune parameters [81, 84–87]. This is ex-
emplified in Fig. 2.5A for an energy transition, with a critical energy 𝐸𝑐: if the
system is subcritical, themechanism needs to drive the system towards 𝐸𝑐. If the
system is supercritical, the same mechanism needs to dissipate energy in order
to bring it to criticality.

As mentioned previously, the Bak-Tang-Wiesenfeld model is the best-known
example14 of a system displaying SOC: in it, criticality is encoded in the distri-
bution of units (sand grains) in the lattice. The toppling dynamics drives the
system towards the critical distribution, from any random initial conditions and
with no extra fine-tuning.

A number of properties (or ingredients) are commonly found in SOC systems,
and have been associated with the concept. First, the state at which the system
arrives at must be critical, displaying the properties explored throughout this
chapter (e.g. power-law observables). The rule that drives the system towards
criticality needs to be non-linear, in many cases employing some form of thresh-
olding. SOC systems also have separation of timescales, with fast dynamics being
driven by slow processes. In the BTW model, those properties are clearly seen:
the toppling rule thresholds dynamics, and it generates fast avalanches of ac-
tivity from slow integration of sand grains being added. The avalanches reflect

14 In terms of displaying properties associated with SOC, the Manna model is considered a better
example, however [86, 88].
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Self-organized criticality

Griffiths phase

Figure 2.5: Extensions of criticality. A. Representation of self-organized criticality
(SOC): a mechanism leads the system towards the critical energy 𝐸𝑐 from
both phases, either driving the subcritical system (adding energy) or dissi-
pating energy of the supercritical one. Reproduced with permission from
[5]. B. Representation of a Griffiths phase: an heterogeneous topology
(quenched disorder) stretches the region with critical-like dynamics in the
subcritical phase (𝜆 < 𝜆𝑐). Reproduced with permission from [83].

power-law spatiotemporal correlations and the critical exponents respect scaling
laws — the final state is critical.

Many other models were adapted with mechanisms that appear to be SOC.
In the context of percolation, coercing the number of active sites to be constant
drives the system towards the percolation threshold [89].Mechanisms have also
been proposed that evolve the topologies of RandomBoolean [90] and Random
Threshold [91, 92] networks towards the critical degree 𝐾𝑐.

The concept of SOC is controversial in statistical mechanics [85, 86], in part
due to the difficulty in rigorously defining what is and what is not SOC. Never-
theless, it found great appeal in many areas of science. In particular, earthquake
size distribution is known to follow the Gutenberg-Richter law: the number of
earthquakes 𝑁 with size greater than 𝑆 = 10𝑚 (where 𝑚 is a given earthquake
magnitude) in a region follows

𝑁(𝑠 > 𝑆) ∼ 𝑆−𝑏 (2.14)
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with 𝑏 ≈ 1 for active regions [93]. At the same time, the Omori law states that,
after an earthquake, the frequency of aftershocks decay with time 𝑇 as

𝑁(𝑇) ∼ 𝑇−𝛼 (2.15)

with 𝛼 ≈ 1. These are old, empirical relationships that are readily explained in
a SOC framework: tectonic movement slowly adds energy to the plates (slow
integration) that are released during an earthquake (fast release). Indeed, SOC
is thought to be an important mechanism behind earthquake dynamics [85,
86]. The concept is also applied in financial systems, due to its nature of being
composed of intelligent agents [62, 94].

In Neuroscience, it has frequently been argued that the brain presents SOC
[95–98]. Synaptic plasticity (in its various forms) could drive the system to-
wards a critical state or a point near to it, depending on task and brain region [96,
99–101]. In Sec. 2.5 we review the experimental evidence for criticality in the
brain, and in Table 2.4 we summarize the evidence for SOC in developing cul-
tures.

2.3.3.2 Griffiths phase

One pattern observed in the models of Sec. 2.3.2 is the influence of topology
on the dynamics: the Ising phase transition depends on dimensionality, where
the percolation threshold of directed percolation depends on the exact struc-
ture of the system. Another type of topological effect than can happen is the
presence of microscopic, structural heterogeneities in the topology 15. These can
alter the nature of existing phase transition, and create new phase transitions in
systems [102, 103].

A Griffiths phase is a phase that emerges from structural heterogeneities
[104–107]. It stretches the region with critical properties from a point (the crit-
ical point) to a phase (the Griffiths phase, see Fig. 2.5B). Thus, instead of the
system adapting its topology and parameters to become critical (as in SOC), dy-
namics with critical properties are built-in in the static topology of the network.

One type of structural heterogeneity is the addition of a modular structure in
the network. It was shown that, by making the network hierarchically-modular
(i.e. made of clusters inside clusters), DP class models exhibited their charac-
teristic power-laws in a much larger region than if the network was random
[107]. This result is particularly interesting in the context of neuronal networks,
as the brain is known to have a modular structure [108, 109]. Thus, both SOC
and Griffiths phase are possible mechanisms to explain criticality in the brain:
SOC through activity-dependent adaptation, and Griffiths phase through spe-
cial, heterogeneous topology.

15 In statistical physics this is known as quenched disorder, due to it not being dependent on dynamics
(“quenched”).
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A B

Figure 2.6: The Galton-Watson branching process. A. Example timeseries from a crit-
ical (𝑚 = 1) process, with activity dying out at different timesteps. B. The
probability of survival 𝑃𝑠 for 𝑡 → ∞, as a function of the branching parame-
ter 𝑚. The system undergoes a continuous phase transition at 𝑚 = 1, below
which activity surely dies out.

2.4 THE BRANCH ING PROCE S S

2.4.1 Definition

A branching process (BP)is a stochastic model with discrete time where each
individual unit at time 𝑡 produces a random number of offspring at time 𝑡 + 1. It
was initially studied in the context of family names, and later found broad utility
in fields such as genetics and nuclear physics [110].

The simplest version of the BP is known as theGalton-Watson branching process.
It is defined as follows: let {𝑋𝑡,𝑖 ∶ 𝑡, 𝑖 ∈ ℕ} be independent and identically dis-
tributed (i.i.d.) random variables with non-negative integer values. Their proba-
bility distribution 𝑃 (𝑋) must satisfy 𝑃 (𝑋 = 0) > 0 and 𝑃 (𝑋 = 0) + 𝑃 (𝑋 = 1) <
1. Let 𝑍𝑡 denote the state of the process at time 𝑡. Then the evolution of 𝑍𝑡 obeys
the following recursive relation

𝑍𝑡+1 =
𝑍𝑡

∑
𝑖=1

𝑋𝑡,𝑖 (2.16)

We can interpret 𝑍𝑡+1 as the number of units at time 𝑡 + 1, given by Eq. 2.16 as
the sum of the random number of offspring of each unit at time 𝑡. Note that 𝑍𝑡+1
depends only on𝑍𝑡, and therefore it is an example of aMarkov chain. TheGalton-
Watson process also makes the simplifying assumptions that the process starts
with 𝑍0 = 1 (one unit) and that the process is stationary (offspring probability
is time-independent). Note that the state 𝑍𝑡 = 0 is absorbing, as it results in
𝑍𝑡′ = 0 for 𝑡′ > 𝑡. This is an example of the avalanche dynamics described in Sec.
2.2.2. In Fig. 2.6A we plot example timeseries of how the process looks like.
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The dynamics of a BP is characterized by the expectation (mean) and variance
of the probability distribution of 𝑋. In particular, the expectation

𝑚 = ⟨𝑋⟩ (2.17)

is known as the branching parameter of the dynamics. In terms of phase tran-
sitions, 𝑚 is the control parameter of the dynamics — the key properties of the
process can be manipulated by changing 𝑚. Similarly to the contact process of
Sec. 2.1, the critical point of a branching process is at 𝑚 = 1.

This can be seen by taking the expectation from both sides of Eq. 2.16, which
results in ⟨𝑍𝑡+1⟩ = 𝑚⟨𝑍𝑡⟩. From this we see that, on average, activity grows
(geometrically) without bounds for 𝑚 > 1 and decreases to zero for 𝑚 < 1.
At the critical point 𝑚 = 1 activity is unstable: it ultimately goes to either 0 or
∞, but can take a long time to do so16. Note that, due to the dynamics being
stochastic, even for 𝑚 > 1 there is always a non-zero probability that activity
dies out. However, if 𝑚 < 1 activity will die out with certainty.

The probability of survival 𝑃𝑆(𝑡) at time 𝑡 can be calculated recursively, for
an arbitrary distribution 𝑃(𝑋), in the formalism of probability generating func-
tions [110]. If 𝑋 ∼ Poisson (𝑚), then 𝑃𝑠 is given by

𝑃𝑠 (𝑡 + 1) = 1 − 𝑒−𝑚𝑃𝑠(𝑡) (2.18)

Since 𝑃𝑠 (𝑡 + 1) ≤ 𝑃𝑠 (𝑡) (as activity must survive for 𝑡 steps to survive for 𝑡 + 1
steps), itmust converge at least asymptotically to some value for 𝑡 → ∞. Defining
𝑃𝑠 ≡ 𝑃𝑠 (𝑡 + 1) = 𝑃𝑠 (𝑡) we find

𝑃𝑠 = 1 + 1
𝑚𝑊0 (−𝑚𝑒𝑚) (2.19)

where 𝑊0(𝑘) is the principal branch of the LambertW function17. In Fig. 2.6Bwe
plot the result. It confirms our earlier statement: for𝑚 ≤ 1 the activity surely dies
out, but 𝑚 > 1 doesn’t guarantee survival. Notice also the similarity between Fig.
2.1B for the contact process and Fig. 2.6B for the branching process: while the
functional shape in the active (supercritical) phase is different, both processes
go through a continuous phase transition at 𝑚 = 𝜆 = 1. As we shall discuss in
Sec. 2.3.1, this is not a coincidence: both processes are members of the directed
percolation (DP) universality class, meaning that at criticality they are the same.

Let us now consider an explicit example of a BP, inspired by neuronal activity.
Consider a systemwhere activity propagates from each active unit (e.g. spiking
neuron) with probability 𝑝 independently to each of its 𝐾 neighbors. If the num-
ber of offspring from unit 𝑖 at time 𝑡 is given by 𝑋𝑡,𝑖, then the probability of 𝑙
offspring is

𝑃 (𝑋𝑡,𝑖 = 𝑙) = (𝐾
𝑙 )𝑝𝑙 (1 − 𝑝)𝐾−𝑙 (2.20)

16 See [110] for a proof.
17 Also known as the product logarithm function, it is defined as a solution of 𝑊(𝑧)𝑒𝑊(𝑧) = 𝑧.
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and the probability distribution is binomial: 𝑋 ∼ Binom (𝐾, 𝑝). From Eq. 2.17,
the branching parameter of this model is simply 𝑚 = ⟨𝑋⟩ = 𝐾𝑝. Thus, in order
to reach criticality (𝑚 = 1) the microscopic variable 𝑝 must be set to 𝑝𝑐 = 1/𝐾.

We can interpret this simple model as activity spreading in a neuronal net-
work in a probabilistic manner. Activity is not determined by firing rates, but by
the actual spike trains. In that case, themicroscopic variable 𝑝 corresponds to the
post-synaptic efficacy of each neuron. The model suggests that the global phase
of the dynamics can be manipulated by changing the (microscopic) synaptic
strength. It also predicts that, at criticality, the average efficacy of each synapse
should scale as ∼ 1/𝐾 with number of synapses.

Since neurons are estimated to have on the order of 𝐾 ∼ 104 synapses, it can
be shown that in this regime the binomial distribution can be approximated by
a Poisson distribution: 𝑋 ∼ Poisson (m = Kp). For practicality, we shall use this
variant to simulate the Galton-Watson BP. It is worth noting that, while the num-
ber of activated units from a single unit is random (Poissonian), the number of
units that try to activate others is given by the previous timestep, and thus the
dynamics can still be highly correlated.

2.4.2 Driven processes

The Galton-Watson branching process lacks some important features that limit
its usefulness in modeling neuronal activity. In particular, we have seen that it
cannot sustain activity without necessarily blowing up.

We can solve this by adding a source of positive noise (or drive) to the dy-
namics of eq. 2.16. If we now denote the number of active units by 𝐴𝑡, a possible
realization is as follows18:

𝐴𝑡+1 =
𝐴𝑡

∑
𝑖=1

𝑋𝑡,𝑖 + 𝐻𝑡 (2.21)

where 𝐻𝑡 are non-negative, integer i.i.d randomvariableswith 𝑃(𝐻 > 0) > 0. As
before, 𝑋𝑡,𝑖 are i.i.d non-negative integer random variables with mean 𝑚 = ⟨𝑋⟩.
This is known as a driven branching process, or a branching process with immigra-
tion [111, 112].

The driven BP results in a non-zero probability that activity is spontaneously
created, and thus the state 𝐴𝑡 = 0 is no longer absorbing. In other words, there
is no phase transition for non-zero drive, and the system cannot be actually crit-
ical. Nevertheless, for a relative small drive 𝐻𝑡 it maintains many of its hallmark
properties. Thus, as is commonly done in the literature, we adapt the nomencla-
ture of the BP and call a driven system with e.g. 𝑚 < 1 as “subcritical”.

If the process has 𝑚 < 1 (“subcritical”) and 𝐻 has finite mean ℎ = ⟨𝐻⟩, then
Eq. 2.21 describes a stationary process with distribution 𝐴∞. We can find its

18 We switch notation here becausewhile classic literature on BPs typically use 𝑍𝑡, modern literature
mentioning driven processes use 𝐴𝑡. Thus, in this thesis 𝑍𝑡 denotes a Galton-Watson BP, while
𝐴𝑡 means a driven BP.
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A B

Figure 2.7: The driven branching process. A. Example timeseries from driven branch-
ing processes with branching parameter 𝑚 < 1. The average activity of each
timeseries is set at ⟨𝐴∞⟩ = 10, and the drive ℎ is adjusted using Eq. 2.23. We
see that, as 𝑚 increases, so does the variance of the timeseries. B. Probability
of activity 𝑃ℎ

𝑠 as a function of 𝑚 and ℎ, using Eq. 2.30. ℎ > 0 smears out the
phase transition of Fig. 2.6B, increasing the probability of activity.

stationary activity rate ⟨𝐴∞⟩ ≡ ⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ by taking the expectation of Eq.
2.21:

⟨𝐴𝑡+1⟩ =
𝐴𝑡

∑
𝑖=1

⟨𝑥𝑡,𝑖⟩ + ⟨𝐻𝑡⟩ = 𝑚⟨𝐴𝑡⟩ + ℎ (2.22)

and thus

⟨𝐴∞⟩ = ℎ
1 − 𝑚 (2.23)

From Eq. 2.23 we see that ⟨𝐴∞⟩ depends on both the branching parameter 𝑚
and the mean drive ℎ. Thus, it is possible to have processes with the same rate
at different distances to criticality 𝜖 = 1 − 𝑚 by adjusting both 𝑚 and ℎ. In Fig.
2.7A we plot example timeseries 𝐴𝑡(𝑚) with the same average rate ⟨𝐴∞⟩ = 10.

While the timeseries 𝐴𝑡 in Fig. 2.7A have the same average rate, they look
very different. We can quantify that by calculating the variance Var [𝐴(𝑡 + 1)]
of a driven BP. From the law of total variance, we have:

Var [𝐴𝑡+1] = ⟨Var [𝐴𝑡+1|𝐴𝑡]⟩ + Var [⟨𝐴𝑡+1|𝐴𝑡⟩] (2.24)

where ⟨⋅|⋅⟩ andVar [⋅|⋅]denote respectively conditional expectation and variance.
Denoting 𝜎2 = Var [𝑋] and 𝜉2 = Var [𝐻], from Eq. 2.21 we have:

Var [𝐴𝑡+1|𝐴𝑡] =
𝐴𝑡

∑
𝑖=1

Var [𝑥𝑡,𝑖|𝐴𝑡] + Var [𝐻𝑡|𝐴𝑡] = 𝐴𝑡𝜎2 + 𝜉2 (2.25)

Var [⟨𝐴𝑡+1|𝐴𝑡⟩] = Var [𝑚𝐴𝑡 + ℎ] = 𝑚2Var [𝐴𝑡] (2.26)
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Applying Eqs. 2.25 and 2.26 on Eq. 2.24 we find:

Var [𝐴𝑡+1] = 𝜎2⟨𝐴𝑡⟩ + 𝜉2 + 𝑚2Var [𝐴𝑡] (2.27)

The stationary variance can be calculated takingVar [𝐴∞] ≡ Var [𝐴𝑡+1] = Var [𝐴𝑡]
and using Eq. 2.23:

Var [𝐴∞] = 𝜎2 ℎ
1 − 𝑚 + 𝜉2 + 𝑚2Var [𝐴∞]

Var [𝐴∞] = 1
1 − 𝑚2 (𝜉2 + 𝜎2 ℎ

1 − 𝑚) (2.28)

From Eq. 2.28 we see that the variance Var [𝐴∞] of the timeseries 𝐴𝑡 depends
heavily on 𝑚, and diverges as 𝑚 → 1. This explains the difference in “burstiness”
in the timeseries of Fig. 2.7A. It is important to note that Var [𝐴∞] depends on
both mean (𝑚, ℎ) and variance (𝜎2, 𝜉2) of 𝑋 and 𝐻. This contrasts to the mean
rate ⟨𝐴∞⟩ (Eq. 2.23), which only depends on the mean. In other words, details
of how the drive is implemented in the BP (given by its variance) do not matter
in order to calculate the mean rate, but do matter in terms of its spread.

Asmentioned above, addingdrive changes howwe interpret the process. Since
there is no quiescent phase (as 𝐴𝑡 = 0 is not absorbing), formally the process
does not undergo a phase transition anymore. We can shed light into this by
calculating the probability 𝑃ℎ

𝑠 (𝑡) of observing activity at some time 𝑡. Starting
from Eq. 2.18, we note that 𝑒−𝑚𝑃𝑠(𝑡) can be interpreted as the probability that ac-
tivity dies out after time 𝑡. Thus, 𝑃ℎ

𝑠 (𝑡) is given by one minus 𝑒−𝑚𝑃𝑠(𝑡) times the
probability that the drive does not restart activity:

𝑃ℎ
𝑠 (𝑡 + 1) = 1 − 𝑒−𝑚𝑃𝑠(𝑡) (1 − 𝐻𝑡) (2.29)

Again solving it for 𝑃ℎ
𝑠 ≡ 𝑃ℎ

𝑠 (𝑡 + 1) = 𝑃ℎ
𝑠 (𝑡) and ℎ = ⟨𝐻𝑡⟩ yields

𝑃ℎ
𝑠 = 1 + 1

𝑚𝑊0 (−𝑚𝑒𝑚 [1 − ℎ]) (2.30)

which we remind is also valid for 𝑚 > 1. In Fig. 2.7B we plot Eq. 2.30 for some
values of ℎ.

Comparing Fig. 2.6B and Fig. 2.7B we see that ℎ > 0 smears the phase transi-
tion of the Galton-Watson BP, which is recovered for ℎ → 0. While we have stated
that themain properties of the BP aremaintained in the driven BP (such as corre-
lation length), they are obviously different models. Exactly how the properties
of the driven BP diverge from the Galton-Watson BP is still an open topic19.

In particular,making the BPdriven complicates the observation of its avalanche
dynamics. For large drives, the system loses its separation of timescales (STS),

19 In Physics, this is equivalent to e.g. the addition of an external magnetic field to the Ising model.
Interestingly, the Ising model with non-zero field is considered to be analytically not solvable in
all but the one-dimensional case [12].
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and activity is continuous. Thus, avalanches are not defined to begin with. A
popularway to circumvent this is to threshold the activity timeseries [78], though
this was shown to produce bias [113–115]. Even in driven systems with STS, it
was shown that large drives can change the power-law (critical) exponents of
the avalanche dynamics [116]. Nevertheless, for small enough values of ℎ the
properties for 𝑚 → 1 are very similar to the true critical process.

From the point of view of neuronal activity, the drive can be interpreted as
both spontaneous activity (which is observed during development [117]) or in-
put from other brain regions that are not part of the system in question. Thus,
the driven BP has two sources of activity: one correlated, composed of the self-
generated recurrent dynamics, and one uncorrelated, composed of external fac-
tors.

2.4.3 Branching networks

A second issue with the Galton-Watson branching process is that it does not
incorporate network effects from the neuronal substrate where activity takes
place. This can be addressed by running the branching process dynamics on a
network, usually called a branching network.

Embedding the dynamics on a network adds another dimension of complex-
ity to the model, as the precise network topology can heavily influence the dy-
namics. For instance, while so far the phase transition considered depends on a
dynamical parameter, it is also possible for it to be topological. Such a topological
phase transition can then dramatically change the dynamics. In other words, by
changing network properties (such as average degree or degree distribution)we
can indirectly control the dynamics. The necessary conditions to control a sys-
tem towards specific dynamical states through topology is the object of study of
network control theory [118, 119].

As an example of a topological phase transition affecting dynamics, consider
an Erdős–Rényi (ER) network20 with average degree 𝐾. The giant component
𝐶 corresponds to the largest fraction of the network that is causally connected
(i.e. there is a path between any two nodes). The giant component is implicitly
given by 𝐶 = 1 − 𝑒−𝐾𝐶 [120], which is the same functional form as Eq. 2.18.
Thus, network connectivity undergoes a phase transition at 𝐾 = 1, identical in
form to the one shown in Fig. 2.6B. For 𝐾 < 1 the size of the largest connected
component does not scale with the size 𝑁 of the network, and 𝐶 → 0 as 𝑁 → ∞.
For 𝐾 > 1 an extensive fraction of the network is connected, at any size. Thus,
for any dynamics that may run on it, the subcritical regime 𝐾 < 1 dramatically
impacts network activity by simply prohibiting its spreading.

As an example of topological effects on the branching network, consider a
driven BP on a regular networkwhere each node has 𝐾 neighbors. As each active

20 In an Erdős–Rényi network each possible link between the 𝑁 nodes exists with probability 𝑝.
Thus, the degree distribution is binomial and 𝐾 = 𝑁𝑝.



28 CR I T I CAL I T Y IN PHYS I C S AND NEUROSC I ENCE

node can independently activate each of its 𝐾 neighbors, the distribution 𝑃(𝑋)
of the branching dynamics is binomial: 𝑋 ∼ Binom(𝐾, 𝑚/𝐾). We then have

𝜎2 = Var [𝑋] = 𝑚 (1 − 𝑚
𝐾 ) (2.31)

and thus increasing 𝐾 increases the variance 𝜎2. From Eq. 2.28, this increase in
𝜎2 results in a linear increase in the variance of the process Var [𝐴∞]. In other
words, increasing the connectivity increases the burstiness of the dynamics, even
if the average activity rate is kept constant.

When simulating branching networks, an important effect is coalescence [111].
Since the dynamics now spreads in a finite system, there is the possibility that
two nodes try to activate the same node at the same time. This results in a loss
of activity, decreasing the effective branching parameter of the dynamics. This
is the mechanism that guarantees finite activity even if we set 𝑚 ≥ 1.

How much activity gets lost from coalescence depends on depends on both
topology and dynamics. Regarding topology, the more local the spreading the
higher the coalescence (such as the one in Chapter 4). From the dynamics, coa-
lescence depends chiefly on amount of activity.

Coalescence effects also mean that the microscopic 𝑚 we put into the system
differs from themacroscopic �̂�𝐿𝑅 we obtain from the global dynamics. Consider
a BPwith branching parameter 𝑚 and drive ℎ on a fully-connected networkwith
𝑁 nodes. The branching parameter can be estimated from the global dynamics
with

⟨𝐴𝑡+1⟩ = �̂�𝐿𝑅⟨𝐴𝑡⟩ + ℎ (2.32)

In Fig. 2.8 we reproduce the resulting discrepancy 𝑚 − �̂�𝐿𝑅 for different 𝑁,
adapted from [111]. In the non-driven branching network (Fig. 2.8A) coales-
cence results in �̂�𝐿𝑅 < 0.999 when setting 𝑚 = 1, even for networks with up to
𝑁 = 106. For the driven BP, on the other hand, the higher level of activity results
in a much larger coalescence effect (Fig. 2.8B). For instance, setting 𝑚 = 1 and
ℎ = 10−3 results in �̂�𝐿𝑅 ≈ 0.95.

While this may seem a small difference, recall that many properties are max-
imized at criticality. Thus, a difference of 1 − 2% in 𝑚 near the critical state can
result in considerably different functional properties. Thus, while a branching
network is an interesting extension of the BP with many applications, it comes
with a number of caveats and technical challenges. Not accounting for them can
result in errors, such as setting 𝑚 = 1 in a branching network and naively claim-
ing that the system is critical.

In the context of neuronal activity, both synaptic plasticity and the extreme
structural heterogeneity of brain regions can be considered examples of topo-
logical effects. Indeed, the study of how to control neuronal activity using tools
from network control theory is an increasingly active area of research [121–126].
As we have seen in Sec. 2.3, in critical phenomena network effects also play an
important role.
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A B

Figure 2.8: Coalescence effects on branching networks. A. Difference between the true
branching parameter 𝑚 and the parameter estimated from the macroscopic
dynamics �̂�𝐿𝑅 with no drive (ℎ = 0) for fully-connected branching net-
works with size 𝑁. B. Same as A for driven branching networks with drive
ℎ. Adapted with permission from [111].

2.4.4 Functional properties

The branching process exhibits the properties described in Sec. 2.2. Two prop-
erties will be particularly relevant later: the autocorrelation function (Sec. 2.2.1)
and the avalanche distributions (Sec. 2.2.2). The autocorrelation function 𝐶(𝑡)
of a BP is exponential:

𝐶(𝑡) = 𝑒−𝑡/𝜏 (2.33)

where

𝜏 = − 1
log 𝑚 (2.34)

is the autocorrelation time of the BP21. Here we see an example of a diverging
property at criticality, as 𝑚 → 1 results in 𝜏 → ∞. Moreover, changing from e.g.
𝑚 = 0.9 to 𝑚 = 0.99 results in more than a 100-fold increase in 𝜏.

To demonstrate that, recall that if a branching process is driven and subcritical,
we have shown in Sec. 2.4.2 that it is stationary with average activity ⟨𝐴∞⟩ =
ℎ/(1 − 𝑚). In that case, the autocorrelation function 𝐶(𝑡) is just the correlation
between activity at an arbitrary time 𝑘 and some other time 𝑘 + 𝑡:

𝐶(𝑡) = corr (𝐴𝑘+𝑡, 𝐴𝑘)

𝐶(𝑡) = ⟨𝐴𝑘+𝑡𝐴𝑘⟩ − ⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩−⟨𝐴𝑘⟩2 = ⟨⟨𝐴𝑘+𝑡|𝐴𝑘⟩𝐴𝑘⟩ − ⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩−⟨𝐴𝑘⟩2

(2.35)

21 The autocorrelation time here is in units of timesteps. When dealing with real systems it becomes
𝜏 = −Δ𝑡/log 𝑚, where Δ𝑡 is the timestep duration (in seconds) of the dynamics
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where the last equality uses the law of total expectation. The value ⟨𝐴𝑘+𝑡|𝐴𝑘⟩ can
be computed using Eq. 2.22 recursively:

⟨𝐴𝑘+𝑡|𝐴𝑘⟩ = 𝑚⟨𝐴𝑘+𝑡−1|𝐴𝑘⟩ + ℎ
= 𝑚 (𝑚⟨𝐴𝑘+𝑡−2|𝐴𝑘⟩ + ℎ) + ℎ

= 𝑚𝑡⟨𝐴𝑘 |𝐴𝑘⟩ + ℎ
𝑡

∑
𝑖=1

𝑚𝑡−𝑖

= 𝑚𝑡𝐴𝑘 + ℎ1 − 𝑚𝑡

1 − 𝑚

(2.36)

where the last equality uses the fact that ⟨𝐴𝑘 |𝐴𝑘⟩ = 𝐴𝑘 and∑𝑡
𝑖=1 𝑚𝑡−𝑖 = (𝑚𝑡 − 1) / (𝑚 − 1).

Since ⟨𝐴𝑘⟩ = ⟨𝐴∞⟩, we have

⟨𝐴𝑘+𝑡|𝐴𝑘⟩ = 𝑚𝑡 (𝐴𝑘 − ⟨𝐴𝑘⟩) + ⟨𝐴𝑘⟩ (2.37)

Applying Eq. 2.37 in Eq. 2.35 yields:

𝐶(𝑡) =
⟨[𝑚𝑡 (𝐴𝑘 − ⟨𝐴𝑘⟩) + ⟨𝐴𝑘⟩] 𝐴𝑘⟩ − ⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩−⟨𝐴𝑘⟩2

=
⟨𝑚𝑡𝐴2

𝑘 − 𝑚𝑡⟨𝐴𝑘⟩𝐴𝑘 + ⟨𝐴𝑘⟩𝐴𝑘⟩ − ⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩−⟨𝐴𝑘⟩2

=
𝑚𝑡⟨𝐴2

𝑘⟩ − 𝑚𝑡⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩−⟨𝐴𝑘⟩2 = 𝑚𝑡

(2.38)

Since here 𝑡 is the variable and 𝑚 is a parameter, it makes sense to write it as

𝐶(𝑡) = 𝑒𝑡 ln 𝑚 = 𝑒−𝑡/𝜏 (2.39)

with 𝜏 = −1/ln 𝑚.
Meanwhile, at criticality the avalanche size distribution 𝑝(𝑆) and the avalanche

duration distribution 𝑝(𝐷) are power-laws with critical exponents 𝛼 = 3/2 and
𝛽 = 2, respectively [110]. The average avalanche size ⟨𝑆⟩(𝐷) is a power-lawwith
exponent 𝛾 = 2. Moreover, the average temporal profile follows Eq. 2.8 where
F is a bell-shaped (parabolic) curve. In summary, we have:

𝑝(𝑆) ∼ 𝑆−3/2

𝑝(𝐷) ∼ 𝐷−2

⟨𝑆⟩ ∼ 𝐷2

𝑠(𝑡, 𝐷) ∼ 𝐷F (𝑡/𝐷)

(2.40)

In Fig. 2.9weplot the avalanche observables for simulations of aGalton-Watson
BP with varying branching parameter 𝑚. Notice how the distance from critical-
ity 𝜖 = 1 − 𝑚 affects the observables: while the true critical state 𝑚 = 1 results
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Figure 2.9: Avalanche observables of a Galton-Watson branching process. A.
Avalanche size distribution 𝑝(𝑆) for BPs with 𝑚 = 1 (red), 𝑚 = 0.99 (green)
and 𝑚 = 0.9 (blue). Dashed line corresponds to 𝑝(𝑆) ∼ 𝑆−3/2. B. Same as
A for the avalanche duration distribution 𝑝(𝐷). Dashed line corresponds to
𝑝(𝐷) ∼ 𝐷−2. C. Same as A for the average avalanche size ⟨𝑆⟩ of a given du-
ration 𝐷. Dashed line corresponds to ⟨𝑆⟩ ∼ 𝐷2. D. Scaled average avalanche
shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled time 𝑡/𝐷. Simulations are from
a Poissonian BP (𝑋 ∼ Poisson(𝑚)) with 106 avalanches for each 𝑚.

in 𝑝(𝑆) spanning 8 orders of magnitude22 using 𝑚 = 0.99 cuts it to 4 orders
of magnitude (with the same number of avalanches), and 𝑚 = 0.9 to 2 orders
of magnitude. The results of 𝑝(𝐷) are even more extreme, as 𝑚 = 0.9 cuts the
power-law behavior to roughly 1 order of magnitude. Thus, even in the most
simple and controllable example of a BP it is not possible to fit 𝑝(𝐷) of a process
with 𝑚 = 0.9 to data and reliably extract the exponent.

While the critical exponents 𝛼 = 3/2, 𝛽 = 2 and 𝛾 = 2 are often mentioned
in the context of branching processes, the precise form of the distributions are
rarely shown. The reason behind this is that the exact shapes of the avalanche
size distribution 𝑝(𝑆) and avalanche duration distribution 𝑝(𝐷) depend on the

22 Due to it being a simulation, we limit the maximum duration in Fig. 2.9 to 𝐷 = 104 steps, which
limits the range of 𝑝(𝐷) and ⟨𝑆⟩(𝐷). Since ⟨𝑆⟩ ∼ 𝐷2, this results in a maximum average size of
𝑆 ∼ 108, which limits the range of 𝑝(𝑆). In principle, however, the power-laws for 𝑚 = 1 stretch
forever.
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A B

Figure 2.10: Analytic solutions for 𝑝(𝑆) of Binomial and Poisson Galton-Watson BP.
A. 𝑝(𝑆) for 𝑋 ∼ Binom (2, 𝑚/2) (full line, Eq. 2.41) and 𝑋 ∼ Poisson(𝑚)
(traced line, Eq. 2.42), for 𝑚 = 0.99. B. Same as A for 𝑚 = 0.9.

details of the implementation (e.g. the probability distribution the number of
offspring is drawn from). This means that how the distributions deviate from
the pure power-laws in the subcritical case (𝑚 < 1) depends on the microscopic
details of the process. Only as 𝑚 → 1 these details become unimportant and the
asymptotic power-laws emerge.

As examples, consider Galton-Watson BPs with 𝑋 ∼ Binom (2, 𝑚/2) and 𝑋 ∼
Poisson(𝑚). The first represents a binomial process with at most 𝐾 = 2 offspring
per active site, while the second represents the continuous 𝐾 → ∞ Poisson pro-
cess. From combinatorial considerations [116], for the binomial case the full ex-
pression for 𝑝(𝑆) (minus normalization constants) is given by:

𝑝(𝑆) ∼ [2𝑚 (1 − 𝑚/2)]𝑆 𝑆−3/2 (2.41)

while the same expression [127] for the Poisson case is:

𝑝(𝑆) ∼ 𝑒𝑆(1−𝑚)𝑚𝑆−1𝑆−3/2 (2.42)

We can see that only for 𝑚 → 1 both expressions reduce to 𝑝(𝑆) ∼ 𝑆−3/2. In
Fig. 2.10 we compare these expressions. We observe that, for the same 𝑚, the
distributions for the Poisson BP extend further than for the Binomial BP.

While for the avalanche distributions having 𝑚 < 1 results in shorter distri-
butions, for the avalanche shape 𝑠(𝑡, 𝐷) it results in a deviation from the char-
acteristic bell-shaped curve F (𝑡/𝐷) (see Fig. 2.9D). Moreover, as we see in Fig.
2.11, 𝑚 < 1 also causes deviations of the exponent 𝛾 used to collapse all the
shapes from the analytical result of 𝛾 = 2. Using a variance minimization algo-
rithm [128], we obtain 𝛾 = 1.95 for our simulations of a critical (𝑚 = 1) BP,
while subcritical (𝑚 = 0.90) dynamics results in 𝛾 = 1.77. It is worth nothing
that the bell-shaped curve F is characteristic of processes with 𝛾 = 2 [129]. For
processes with e.g. 𝛾 = 3/2 (such as the unbiased Random Walk) it is a semi-
circle instead [130].
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A B C

Figure 2.11: Avalanche shape collapse of a Galton-Watson branching process. A.
Scaled average avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled
time 𝑡/𝐷 for 𝑚 = 1. The black line corresponds to the average shape, while
the semi-transparent lines correspond to the average shape of avalanches
with the same duration 𝐷. B. Same as A for 𝑚 = 0.99 C. Same as A for
𝑚 = 0.9 Simulations are from a Poissonian BP (𝑋 ∼ Poisson(𝑚)) with 106

avalanches for each 𝑚.

A last propertyworthmentioning is the susceptibility 𝜒 = 𝜕⟨𝐴∞⟩/𝜕ℎ for ℎ → 0.
It reflects the average system response to a small perturbation. From Eq. 2.23, it
is:

𝜒 = lim
ℎ→0

𝜕⟨𝐴∞⟩
𝜕ℎ = 1

1 − 𝑚 (2.43)

and thus it also diverges at criticality. In other words, as 𝑚 → 1 the system be-
comes increasingly sensitive to changes in the drive (e.g. stimuli).

2.5 S I GNATURE S O F CR I T I CAL I T Y IN NEURONAL DYNAM IC S

2.5.1 Neuronal avalanches

The first notable evidence23 for criticality in neuronal dynamics came from the
seminal paper by Beggs & Plenz in 2003 [1]. Using local field potential record-
ings of neuronal cultures and slices (i.e. in vitro), they’ve shown that neuronal
networks can display the avalanches of activity (known as neuronal avalanches)
described in Sec. 2.2.Moreover, the avalanche size distribution followed a power-
law 𝑝(𝑆) ∼ 𝑆𝛼 with exponent24 𝛼 = 3/2. Estimating the branching parameter
also yielded 𝑚 ≈ 1. Both measures, 𝛼 = 3/2 and 𝑚 ≈ 1, suggest dynamics of

23 Theoretical arguments for criticality in the brain predate experimental evidence by at least a
decade [2].

24 In that, and other experiments, the obtained exponent varied with bin size Δ𝑡. This is discussed
in Chapter 3.
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Figure 2.12: Avalanche size distributions 𝑝(𝑆) from different studies using local
field potentials. A: 𝑝(𝑆) from in vitro cultures obtained in the original
2003 work by Beggs & Plenz [1]. B: 𝑝(𝑆) from anesthetized rats, from
Gireesh et al. [131]. C: 𝑝(𝑆) from awake monkeys, from Petermann et
al. [132]. D: 𝑝(𝑆) from awake monkeys with a high density (smaller)
recording array, from Klaus et al. [133]. Figure adapted from [133].
doi:10.1371/journal.pone.0019779.g001

a critical branching process (see Sec. 2.4). This result sparked intense research
on criticality in the brain. The avalanche size distribution obtained by Beggs &
Plenz can be seen in Fig. 2.12A.

Following this pioneering work a wide body of research formed, claiming sig-
natures of criticality in different experiments (see Fig. 2.12B-D). This suggested
that criticality could be a universal, simple explanation for how the brain prop-
agates activity. The neuronal networks studied ranged from cultures to awake
animals of various species, with a wide variety of techniques.

Broadly, these techniques either aim to record the spiking activity of some in-
dividual neurons (spike detection), or to record some local average of the activ-
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Table 2.1: Compilation of experimental findings of neuronal avalanches. For cultures,
“region” corresponds to the brain region neurons were extracted from. Range
of 𝑝(𝑆) was either given in the text, or estimated visually. Exponents with “≈”
are not explicitly fitted but instead visually compared.

authors technique region system exponent 𝛼 range of 𝑝(𝑆)

Beggs et al., 2003 [1] LFP cortex culture ≈ 1.5 1-60
Gireesh et al., 2008 [131] LFP cortex culture 1.53 ± 0.02 1-32

Petermann et al., 2009 [132] LFP cortex monkey ≈ 1.5 1-32
Klaus et al., 2011 [133] LFP cortex monkey ≈ 1.5 1-96

Friedman et al., 2012 [134] spikes cortex culture 1.7 1-30
Meisel et al., 2013 [135] MEEG whole head human ≈ 1.5 1-27
Palva et al., 2013 [136] MEEG whole head human 1.31 1-66

Priesemann et al., 2013 [137] LFP varied human 1.58 ± 0.06 1-50
Shriki et al., 2013 [138] MEEG whole head human ≈ 1.5 1-100
Scott et al., 2014 [139] imaging cortex rat ≈ 1.5 1-1000

Arviv et al., 2015 [140] MEEG whole head human 1.50 1-100
Bellay et al., 2015 [141] imaging cortex rat 1.63 ± 0.13 0.01-10

Fagerholm et al., 2015 [142] imaging cortex rat ≈ 1.5 1-1000
Massobrio et al., 2015 [143] spikes cortex culture 1.48-1.52 1-500

Shew et al., 2015 [144] LFP cortex (visual) turtle 1.6-2.6 3-200
Clawson et al., 2017 [145] LFP cortex (visual) turtle 1.8 ± 0.3 2-500

Hahn et al., 2017 [146] spikes cortex (visual) monkey 1.58 ± 0.03 1-20
Levina et al., 2017 [22] spikes cortex culture ≈ 2 1-5900

Yaghoubi et al., 2018 [147] imaging hippocampus culture 1.65 ± 0.1 1-500
Ponce-Alvarez et al., 2018 [148] imaging whole brain zebrafish 2.01 ± 0.03 1-10000

Bocaccio et al., 2019 [149] imaging whole head human ≈ 2 1-1000
Kanders et al., 2020 [150] spikes hippocampus rat 2.18 ± 0.05 1-60

ity of many neurons, either directly or indirectly (using some activity correlate
such as blood-level oxygenation). Thus, they not only record activity differently
(directly vs indirectly), but also at different scales (single-neuron vs popula-
tion). Techniques that record activity on a population scale include the afore-
mentioned local field potential (LFP), and electroencephalography (EEG) and
magnetoencephalography (MEG),with both collectively calledMEEG[151].Note,
even between those, the difference in scale: while LFP recordings typically cover
regions a few millimeters in size, an EEG cap covers the entire human head.
More recently, studies also began using optical imaging techniques [141, 142,
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Table 2.2: Scaling of experiments that measure the full set of power-laws.

Source 𝛼 𝛽 𝛾 (𝛽 − 1) / (𝛼 − 1)

Branching process 3/2 2 2 2
Random walk 4/3 3/2 3/2 3/2
Friedman et al. [134] 1.7 1.9 1.3 1.3
Kanders et al. [150] 2.18 2.76 1.43 1.49
Ponce-Alvarez et al. [148] 2.01 3.01 1.85 1.99

147, 148]. Imaging techniques can in principle record up to single neuron activ-
ity [152–154]. While the temporal resolution at which they can record activity
remains slower than the timescale of propagation, they hold great promise for
future, fully-sampled studies of spiking activity.

In Table 2.1 we summarize the findings of a number of studies of neuronal
avalanches. We see that indeed an impressive variety of experimental systems
produced the same signature of criticality, namely that activity spreads in avalanches
with 𝑝(𝑆) ∼ 𝑆−𝛼. Measured exponents 𝛼 also mostly agreed with the critical
branching process value of 𝛼 = 3/2. Yet, it is important to notice some general
aspects in those studies:

1. most of the analyzed regions are cortical.

2. range of power-law behavior is narrow, often below the standard of 2 or-
ders of magnitude [27].

3. the majority of the evidence comes from non-spiking recordings (LFP,
MEEG, imaging with coarse scales).

The first aspect is perhaps the most important: due to its functional role, the
cortex is a natural region to study using critical phenomena. Yet, different re-
gions of the brain can be very different from cortex both functionally and physi-
ologically. The early visual system, for instance, makes use of very specific struc-
tures and neuronal types in order to process visual information — it is doubtful
that critical phenomena could shed much light into its function. Thus, it is pru-
dent to limit claims of criticality in vivo to the experiments with ample evidence:
cortex, and large-scale whole-brain activity.

The second aspect is related to experimental constraints: number of recording
sites, e.g. the number of electrodes in a multi-electrode array (MEA), limit the
size of events that can be recorded. In particular, with non-spiking recordings
(such as LFP and MEEG) the number of electrodes typically impose a hard cut-
off on 𝑝(𝑆) [155].

The third aspect is related to spiking vs non-spiking recordings, and will be
explored in detail in Chapter 4. Briefly, there we show that electrode-based non-
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Figure 2.13: Avalanche observables from Friedman et al. [134]. A. Avalanche size dis-
tribution 𝑝(𝑆) from a sample culture, fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with 𝛼 = 1.7.
B. Same as A for the avalanche duration distribution 𝑝(𝐷), fitted to 𝑝(𝐷) ∼
𝐷−𝛽 with 𝛽 = 1.9.C. Same as A for the average avalanche size ⟨𝑆⟩(𝐷), fitted
to ⟨𝑆⟩ ∼ 𝑆𝛾 with 𝛾 = 1.3. D. Scaled average avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1

as a function of the scaled time 𝑡/𝐷. Adapted from [134].

spiking recordings are less sensitive, and cannot distinguish critical from con-
siderably subcritical dynamics.

Nevertheless, there is compelling evidence for criticality in vitro: in the work
by Levina & Priesemann [22], for instance, the obtained 𝑝(𝑆) followed a power-
law over a large range. Importantly, both in Friedman et al. [134] and Kanders et
al. [150] the full set of scaling relationships from a critical system was obtained.
See respectively Fig. 2.13 and Fig. 2.14 for the results, which are qualitatively
comparable to the observables of the Galton-Watson BP (Fig. 2.9).
In vivo, on the other hand, to the best of our knowledge the only evidence for

the full set of scaling relationships comes from Ponce-Alvarez et al. [148]. In this
study, Light Sheet Fluorescence Microscopy is used to image the whole-brain
dynamics of zebrafish larvae. The technique offers good spatial resolution, with
∼ 104 regions of interest (ROI) composed of few or single neurons. However,
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Figure 2.14: Avalanche observables fromKanders et al. [150]. A.Avalanche size distri-
bution 𝑝(𝑆) from a sample culture, fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with 𝛼 = 2.18±0.05.
B. Same as A for the avalanche duration distribution 𝑝(𝐷), fitted to 𝑝(𝐷) ∼
𝐷−𝛽 with𝛽 = 2.76±0.16.C. Same asA for the average avalanche size ⟨𝑆⟩(𝐷),
fitted to ⟨𝑆⟩ ∼ 𝑆𝛾 with 𝛾 = 1.43 ± 0.05. D. Scaled average avalanche shape
𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled time 𝑡/𝐷. Adapted from [150].

the temporal resolution of 470 ms observes a far slower dynamics than spiking
activity (< 10 ms). The results are shown in Fig. 2.15.

Interestingly, in all experiments the best-fit exponents deviate from the branch-
ing process dynamics of (𝛼 = 3/2, 𝛽 = 2, 𝛾 = 2): in Friedman et al. they are
(𝛼 = 1.7, 𝛽 = 1.9, 𝛾 = 1.3), in Kanders et al. they are (𝛼 = 2.18, 𝛽 = 2.76,
𝛾 = 1.43) and in Ponce-Alvarez et al. they are (𝛼 = 2.01, 𝛽 = 3.01, 𝛾 = 1.85).

Nevertheless, they all follow the basic scaling law of (𝛽 − 1) / (𝛼 − 1) = 𝛾: in
Friedman et al. it is (𝛽 − 1) / (𝛼 − 1) = 1.29, while inKanders et al. it is (𝛽 − 1) / (𝛼 − 1) =
1.49 and finally (𝛽 − 1) / (𝛼 − 1) = 1.99 for Ponce-Alvarez et al.. These are com-
patible with the independently measured values for 𝛾, and appear to collapse
the average avalanche shape well (Figs. 2.13D, 2.14D, 2.15D). In Table 2.2 we
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Figure 2.15: Avalanche observables fromPonce-Alvarez et al. [148]. A.Avalanche size
distribution 𝑝(𝑆) from 𝑁 = 6 zebrafish larvae, fitted to 𝑝(𝑆) ∼ 𝑆−𝛼 with
𝛼 = 2.01 ± 0.03. B. Same as A for the avalanche duration distribution 𝑝(𝐷),
fitted to 𝑝(𝐷) ∼ 𝐷−𝛽 with 𝛽 = 3.01 ± 0.11. C. Same as A for the average
avalanche size ⟨𝑆⟩(𝐷), fitted to ⟨𝑆⟩ ∼ 𝑆𝛾 with 𝛾 = 1.85 ± 0.03. D. Scaled
average avalanche shape 𝑠(𝑡, 𝐷)/𝐷𝛾−1 as a function of the scaled time 𝑡/𝐷.
Adapted from [148].

summarize these exponents, and compare them to the ones fromboth the branch-
ing process and the (unbiased) random walk [116] process.

While a number of mechanisms can generate apparent power-laws [7, 9], the
full set of scaling exponents respecting Eq. 2.40 is unlikely to be explained by
dynamics without a phase transition. Thus, it constitutes strong evidence that
critical-like dynamics can arise in vitro.While evidence that criticality can emerge
in vivo begin to appear with imaging techniques [148], it still does not corre-
spond to spreading spiking activity due to sampling rates much slower than
spiking activity. Thus, to the best of our knowledge, neither long ranges of 𝑝(𝑆)
nor the full set of scaling exponents have been reported for spiking activity in
vivo.
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Table 2.3: Compilation of experiments analyzing cognitive changes and how it relates
to changes in the dynamical state.

authors technique main conclusion

Ribeiro et al. al,
2010 [156]

spikes Near-critical dynamics in awake rats, anesthe-
sia destroys temporal signatures of criticality.

Priesemann et
al., 2013 [137]

LFP Subcritical dynamics in humans, increasingly
close to critical in the following order: REM
sleep, awakeness, slow-wave sleep.

Scott et al.,
2014 [139]

optical
imaging

Critical dynamics in awake mice, supercriti-
cal dynamics in anesthesia.

Bellay et al.,
2015 [141]

two-photon
imaging

Near-critical dynamics in awake rats, dis-
rupted in anesthesia.

Fagerholm et
al., 2015 [142]

EEG/fMRI Near-critical dynamics in resting state of hu-
mans, subcritical dynamics during task.

Tagliazuccchi
et al.,
2016 [157]

fMRI Near-critical dynamics in awake humans,
subcritical dynamics during unconscious-
ness.

Bocaccio et al.,
2019 [149]

fMRI Near-critical dynamics in awake humans,
supercritical-like in deep sleep.

Ezaki et al.,
2020 [158]

fMRI Higher cognitive performance in humans
with brain dynamics closer to criticality.

2.5.2 Deviations from criticality

Regardless of the technical challenges, it is a common working hypothesis that
baseline cortical dynamics is critical or near-critical. From that, many studies fo-
cused on how changes from this baseline can result in deviations from critical
dynamics. Topics of research associatedwith possible deviations from criticality
can be divided in three main groups: i) cognitive effects, ii) neurological disor-
ders, and iii) development in vitro. In the following we discuss these three lines
of research.

Most studies of cognition in vivo (in the context of criticality) are concerned
with the effects of loss-of-consciousness (LOC) on brain function. In Table 2.3we
summarize a number of experiments on that. Generally speaking, it was shown
that LOC results in deviations from baseline critical or near-critical dynamics.
The nature of those deviations depends on the nature of the LOC: rapid eye
movement (REM) sleep has been found to skew the dynamics towards a more
subcritical state [137, 157], while deep sleep produced disruptions that can be
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interpreted as supercritical25 [149]. Anesthesia also resulted in changes compat-
ible with supercritical dynamics [139, 141, 156]. In terms of task performance, a
smaller distance to criticality has been found to correlate with higher cognitive
performance [158]. Interestingly, the distance to criticality has been observed to
increase (i.e. more subcritical) during attention tasks [142].

It has been surmised that task-related changes from critical dynamics can be
explained by thewaywhich criticalitymaximizes variability and sensitivity (Sec.
2.4.4) [6]. While a highly variable, flexible dynamic state could be optimal in a
pre-task context, it could be detrimental during focused attention. This effect
has been long studied in the context of neuronal variability (“brain noise”) dur-
ing task and stimulus onset, in which neuronal variability is observed to de-
crease [159, 160].

The study of neurological disorders using the concept of criticality focusmostly
on epilepsy [161–165]. As epileptic seizures are associatedwith synchronization
issues [166], they are often modeled in terms of a transition between oscillatory
and non-oscillatory activity [163–165]. This type of transition is known in dy-
namical systems as a bifurcation point.

Seizures have also been modeled in terms of the quiescent-active transition
of the branching process. In that picture, seizures are associated with supercrit-
ical dynamics, as its activity-amplifying properties can be considered a source
of instability. Despite its appeal, evidence that seizures are related to supercrit-
ical dynamics is conflicting. It has been shown that seizures are accompanied
by an excess in larger avalanches of activity [161], and that anti-epileptic drugs
induce subcritical dynamics [167]. However, no link between seizure onset and
supercritical dynamics has been observed [168–170] (see Fig. 2.16B).

This lack of evidence that supercritical dynamics is implied in epilepsy may
be due to the inherent variability of near-critical dynamics. We can see this in
the Galton-Watson BP (Sec. 2.4.1), where only for a very supercritical 𝑚 ≈ 1.4
an avalanche is more likely than not (𝑃𝑠 > 50%) to result in runaway activity26.
Nevertheless, research continues into how criticality may be used in seizure pre-
diction.

Changes to the large-scale dynamics of neuronal networks have been observed
during development in vitro. In Table 2.4 we summarize some experiments ex-
ploring that. Generally, they point towards the network becoming closer to crit-
icality as it develops [22, 101, 150, 171]. It is interesting to note that this change
is sometimes not smooth— the network dynamics goes through subcritical and
supercritical phases, as if the driving mechanism is correcting after undershoot-
ing/overshooting the critical point. Mechanistically, it is proposed that this hap-
pens due to plasticity rules in a form of self-organized criticality [172, 173].

25 As we’ve seen in Sec. 2.4, a finite system cannot be simultaneously stationary and rigorously
critical or supercritical. Thus, we employ “supercritical” as short-hand for a not strictly stationary
process which is transiently supercritical.

26 This is seen in Fig. 2.6B, and numerically shown by solving Eq. 2.18 for 𝑃𝑠 = 0.5.
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Table 2.4: Experiments analyzing development of neuronal cultures, at different days
in vitro (DIV).

authors reported dynamic state

Tetzlaff et al.,
2010 [101]

Subcritical (DIV < 20), supercritical (DIV = 20), subcritical
(DIV = 36) and finally critical (DIV = 58).

Pu et al.,
2013 [171]

Subcritical, then critical/supercritical (�̂� ≈ 1.2) during 30−
80% of culture lifetime (up to DIV = 147).

Levina et al.,
2017 [22]

Subcritical (DIV < 21) then critical (DIV = 21 and DIV =
34).

Kanders et al.,
2020 [150]

Subcritical (DIV ≤ 9), then critical (DIV = 10 and DIV =
11) then supercritical (DIV = 13).

It is important to note that this evidence comesmostly from neuronal cultures.
Interpreting and extrapolating results from cultures requires care, as i) cultures
start dissociated, so activity is always uncorrelated in the beginning and ii) cul-
tures die after at most a few months, so eventually the dynamics degrade due
to that effect (it e.g. stops being critical). More importantly, it is unclear how
much can be generalized from cultures to living brains, due to differences in
structure and stimulation27 It is also important to note that not all cultures de-
velop towards a critical state. For instance, Pu et al. [171] report non-critical be-
havior in 6 out of 23 culture samples, while Pasquale et al. [174] and Friedman
et al. [134] report different culture samples developing towards different points
in the subcritical-supercritical range.

This variability can be due to a number of variables that are difficult to control
in experiments, such as variability in network topology and spike rate. Changes
in the topology may lead to different types of dynamics [147], while it was
shown that spike rate homeostasis can drive branching networks towards vary-
ing levels of subcritical dynamics depending on the target rate [173]. Moreover,
neurons die as the culture develops, and the neuronal density inmature cultures
vary over a wide range of 10 − 103 neurons/mm2 [175, 176].

2.5.3 Reverberating dynamics in vivo

All in all, the studies mentioned in Sec. 2.5.1 and Sec. 2.5.2 suggest that i) near-
critical dynamics is a good fit to baseline neuronal activity, and ii) changes from
this baseline can be characterized within the framework of critical processes.

Nevertheless, we’ve shown that experimental evidence of criticality comes
with a number of technical caveats,mostly derived fromexperimental constraints.

27 Most cultures are not stimulated apart from being placed in a medium that induces spiking ac-
tivity. Even in those that are, it is challenging to design a stimulation protocol generating input
statistics resembling those of in vivo.



2.5 S I GNATURE S O F CR I T I CAL I T Y IN NEURONAL DYNAM IC S 43

A B

Figure 2.16: Experimental evidence of reverberating dynamics. A. Estimated branch-
ing parameter �̂� of monkeys (prefrontal cortex), cats (visual cortex) and
rats (hippocampus). Adapted from [177]. B. Estimated branching param-
eter �̂� of human patients with epilepsy, for the epileptic region (purple)
andnon-epileptic hemisphere (gray). Brain areas are the hippocampus (H),
amygdala (A), parahippocampal cortex (PHC) and entorhinal cortex (EC).
Adapted from [170].

In many situations, these caveats inhibit a more precise classification of the dy-
namics beyond “near-critical”. For example, the short power-laws usually ob-
tained from analysis of neuronal avalanches make it difficult to distinguish sub-,
super- and critical dynamics (see Fig. 2.9A-C). This is significant, as we’ve estab-
lished that functional properties (such as sensitivity to input) vary dramatically
near criticality.

Importantly, subsampling of spiking activity hinders precise classification of
the dynamics at the neuronal level. By failing to fully observe the system not
only activity is lost, but it gets less correlated both in space and time. As a result,
measures such as the autocorrelation function 𝐶(𝑡) are biased towards lower
values, and smaller avalanches are observed.

Recently, mathematical tools have been developed to correct for this subsam-
pling bias. In terms of neuronal avalanches, Levina & Priesemann [22] demon-
strated how to scale the subsampled avalanche size distribution and recover the
true avalanche size distribution. Importantly, Wilting & Priesemann [178] de-
veloped a method to obtain the true branching parameter even under heavy
subsampling. Using this method, they found that baseline in vivo spiking ac-
tivity operates consistently in a slightly subcritical, driven regime. This result
was consistent across species (monkey, rat, cat, human) and brain regions [170,
177, 178] (see Fig. 2.16). It supports (and quantifies) earlier results from neu-
ronal avalanches of spikes [179]. Such regime is on average 2% off criticality
(�̄� ≈ 0.98), and is called reverberating.

We argue [100] that this reverberating regime is an ideal baseline fromwhich
activity can flexibly adapt to task requirements. It maintains a safe distance from
critical instability while still drawing from interesting properties of the critical
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Figure 2.17: Reverberating dynamics in vivo. A. Example timeseries of activity with
Poissonian (𝑚 = 0), Reverberating (𝑚 = 0.98) and near-critical (𝑚 =
0.9999) dynamics. B. Hierarchical representation of the visual and auditory
systems. As input moves up the hierarchy, timescales increase. C. Repre-
sentation of a tuning mechanism from a baseline reverberating dynamics:
if a predator sees a prey, relevant areas are tuned in (increased timescales),
while non-relevant areas are tuned out. Reproduced from [100].

state. For instance, it results in an autocorrelation time of 𝜏 = −𝛿𝑡/ln(0.98) ≈
200 ms, where we use 𝛿𝑡 = 4 ms as the timescale of spiking activity. In this
regime, a 1% increase in 𝑚 doubles 𝜏, while a 1% decrease results in a 33% de-
crease in 𝜏. In terms of sensitivity to input (Eq. 2.43), the 1% increase doubles
the sensitivity, while the 1% decrease cuts it in half. As 𝑚 → 1 this change be-
comes more extreme, but it incurs into a higher risk of runaway activity, and of
dynamics becoming dominated by fluctuations in e.g. synaptic strength [180].

Thus, being in the reverberating regime could offer a way for neuronal activ-
ity to quickly tune in or tune out external input, depending on requirements.
We illustrate this in Fig. 2.17C, where such a mechanism could be used to dy-
namically amplify important input (e.g. visual input with prey), and suppress
non-relevant ones.



3
SAMPL ING B IA S

In this chapter we explore how sampling bias can affect dynamics on a number
of different systems. All the results shown here can be considered new. We first
introduce the concept, and demonstrate how sampling bias can affect the ob-
servables of the branching process. We then show how imperfect sampling can
bias the coarse graining of the Ising model, introducing spurious correlations.
Lastly, we demonstrate how sampling bias combined with frequency filtering
can produce the variability in neuronal spectra observed in experiments. We
find the signature of those mechanisms in a large number of datasets. This re-
sult suggest that sampling of neuronal activity using electrodes is better in vivo
than in vitro.

3.1 WHAT I S SAMPL ING B IA S ?

In statistical inference, sampling refers to the process of estimating characteris-
tics of a population (system) by selecting a subset of individuals (samples) [181].
Usually, statistical inference operates under the assumption that samples are in-
dependent and identically-distributed (i.i.d) random variables with finite vari-
ance. Under this assumption, the central limit theorem guarantees that themean
of the sampled characteristic converges to the true mean of the distribution and
that the sampled distribution is Gaussian. Furthermore, the Berry-Essen theo-
rem states that the convergence rate is ∼ 𝑛−1/2, with 𝑛 being the number of
samples.

When the assumption of i.i.d. random variables fails, it cannot be assumed
that sampled characteristics converge monotonically (or quickly) to their true
values1. It can result in erroneous values for the incompletely-sampled charac-
teristics of the population, which we call sampling bias. Generally, sampling
bias is an important issue in any field where sampling is incomplete. For in-
stance, in population statistics one of the main goals is how to avoid bias in pop-
ulation surveys (e.g. election polls) [182]. Sampling also affects the perceived
structure of networks. For instance, undersampled scale-free2 networks are not
scale-free [184].

When considering dynamical systems, in particular, samples are generally not
i.i.d. Since a dynamical system evolves in timemodeled by a set of (deterministic
or probabilistic) equations, samples are usually correlated in time. Thus observ-

1 It also means that standard statistical tests like the t-test and ANOVA do not apply anymore.
2 A scale-free network is onewhere the degree distribution follows a power-law 𝑝𝑘 ∼ 𝑘−𝛼. Scale-free

properties have been observed in many real-world networks [183].

45
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A B C

Figure 3.1: Effects of subsampling on a branching process with 𝑚 = 0.99. A. Activ-
ity timeseries 𝐴(𝑡) of the BP with sampling probability 𝑝 = 1 (blue) and
𝑝 = 0.01 (orange). B. Autocorrelation function 𝐶(𝑡) of the timeseries of A. C.
Estimation of the branching parameter �̂� by fitting 𝐴 (𝑡 + 1) = �̂�𝐴 (𝑡) + ℎ,
for varying levels of 𝑝.

ables of the system must be either i) invariant under sampling3 or ii) explicitly
corrected for it.

To exemplify the effects of sampling in a dynamical system, lets consider
the branching process defined in Sec. 2.4. For a BP with branching parameter
𝑚 = 0.99 (close to criticality), lets assume that each event is observed with
probability 𝑝. As we can see in Fig. 3.1A, the activity timeseries 𝐴(𝑡) when sam-
pling 1% of the events (𝑝 = 0.01) can look dramatically different from the fully-
sampled one (𝑝 = 1). More importantly, failing to observe events decorrelates
activity, which leads to sampling bias in observables of collective dynamics.
We observe this in Fig. 3.1B, where sampling 1% of the events results in an
offset in the autocorrelation function 𝐶(𝑡). In Fig. 3.1C we see the subsampled-
induced bias in the estimation of the branching parameter �̂�, obtained by fitting
𝐴 (𝑡 + 1) = �̂�𝐴 (𝑡) + ℎ. While the fully-sampled dynamics (𝑝 = 1) recovers the
correct value, sampling 1% of the events results in �̂� ≈ 0.3. From Eq. 2.34, this
means we underestimate the true autocorrelation time 𝜏 of the dynamics by a
factor of 100.

In the case of (biological) neuronal dynamics, biasing 𝜏 by such an amount
would make it indistinguishable from zero. Thus, the near-critical dynamics of
the 𝑚 = 0.99 branching process would be erroneously classified as uncorrelated.
This ties into what has been called the “dark matter” problem of neuronal ac-
tivity: neurons can spike very little or only under specific input, and thus not
show in typical recordings [185]. Similar to the subsampling of the branching

3 An example of an invariant observable is the one developed in [178] to obtain an unbiased esti-
mate of the branching parameter 𝑚.
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dynamics, the existence of these silent neurons could bias our understanding
how activity propagates in the brain.

3.2 SAMPL ING B IA S IN THE I S ING MODEL

3.2.1 Coarse graining

The 2D Ising model (discussed in Sec. 2.3.2) is often used to exemplify how a
system can be sampled while keeping its main properties. This is done through
a renormalization group (Sec. 2.3.1) transform, also known as coarse graining of
the Ising model [55]. In this framework, the system is rescaled by merging mul-
tiple spins into one. This new coarse-grained system, made of rescaled “super-
spins”, offers a larger scale view on the dynamics4.

The actual process of coarse graining the Isingmodel can be done in a number
of ways. Themost common one is known as the real-space5 blockspin transform
with a majority rule. In that, blocks of 𝑏 × 𝑏 spins are grouped into a single spin,
with sign (+1 or −1) equal to themajority valuewithin the group.We exemplify
this in Fig. 3.2.

Importantly, the coarse-grained system is not identical to the underlying sys-
tem — for one, it is subject to finite-size effects and thus its observables are nu-
merically different. As mentioned in Sec. 2.3.1, only at criticality the observables
of the Ising model are invariant under coarse-graining.

In order to study the coarse graining of the Ising model, we perform Monte
Carlo simulations of the 2D Isingmodel using themassively parallelmulticanon-
ical method [186, 187]6. The multicanonical method offers numerous advan-
tages over conventional Monte Carlo approaches. For instance, instead of sim-
ulating at a single temperature, one simulation covers the whole energy space.
High-precision canonical expectation values of observables are recovered for
any desired temperature during a post-production step.

In Fig. 3.2B we observe the effects of coarse graining on the normalized abso-
lute magnetization 𝑚(𝑇) = 1

𝑁 | ∑𝑖 𝑠𝑖|. Only at the critical point 𝑇 = 𝑇𝐶 we find
an invariant 𝑚(𝑇) — for 𝑇 < 𝑇𝑐, 𝑚 is increased, while for 𝑇 > 𝑇𝑐, 𝑚 is decreased.

An alternative rule for coarse graining the Ising model is known as the dec-
imation rule. In that, instead of using the majority of spins within the block, a
random spin is chosen to represent the block.

If instead of the majority rule the decimation rule is used, the blocking proce-
dure does not alter the correlation between spins before and after the transfor-
mation (Fig. 3.2C). As a consequence, the magnetization remains unaltered in
general. However, in the disordered phase, we still notice a systematic deviation
from the unblocked system (with 𝐿 = 64). This deviation can be fully attributed

4 This is related to the concepts of spatial sampling and cluster sampling in statistics [181].
5 For other systems, renormalization is often done in momentum space.
6 Results in this section were produced in conjunction with F. P. Spitzner.
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Figure 3.2: Coarse graining the Ising model. A. Representation of the coarse graining
where a 4 × 4 (𝐿4) system gets rescaled to a 2 × 2 system with a majority rule
and block size 𝑏 = 2. B. Effect of coarse graining on the average magnetiza-
tion 𝑚(𝑇) with block size 𝑏 = 4. Since the system is rescaled by a factor of
1/𝑏2, the blocked systemwith size 𝐿64 needs to be compared to an unblocked
system with size 𝐿16. Only for 𝑇 = 𝑇𝐶 we find an invariant 𝑚(𝑇) under
coarse graining. C. Comparison between the fully-sampled, unblocked sys-
tem and blocked systems using themajority rule and the decimation rule for
𝑏 = 4. All simulations and curves for 𝐿 = 64. In the ordered, low-temperature
phase, the sub curve matches the fully sampled system. Only for the high-
temperature phase deviations occur due to finite-size effects (the magneti-
zation for 𝑇 → ∞ approaches the value expected for the rescaled 𝐿 = 16
system). The coarse curve is systematically biased towards more ordered
states.

to finite-size effects: The distribution of realizable magnetizations in the disor-
dered phase follows a Gaussian with mean zero and variance proportional to
the (effective) number of spins. Due to the definition of the magnetization with
absolute value, the expectation value of the magnetization for 𝑇 → ∞ is deter-
mined by the (effective) system size. Note that the impact of different block-
transformation rules on 𝑚(𝑇) will not hold for all other canonical observables
such as the energy 𝐸(𝑇) [55].

Here we used the coarse graining of the Ising model to demonstrate two im-
portant concepts: i) only at criticality the observables are preserved under rescal-
ing and ii) the details of the rescaling procedure can impact how it biases the
observables away from criticality.



3.2 SAMPL ING B IA S IN THE I S ING MODEL 49

b=4

d=4 d=3

b=4A B

M
ag

ne
tiz

at
io

n
m

(T
)

Temperature T/Tc

0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

d<b L32

d=b L64

d>b L128

unblocked L16

Tc

Temperature T/TC

C

Figure 3.3: Coarse graining the Ising model. A. Representation of the standard coarse
graining where block size matches the distance between blocks (𝑑 = 𝑏 = 4).
No overlap is created. B. Coarse graining with block size 𝑏 = 4 and a dis-
tance between blocks of 𝑑 = 3. Overlapping spins (orange) are shared by two
or more blocks. C. With the majority rule, overlap impacts the spontaneous
magnetization 𝑚(𝑇). Only the crossing between the unblocked (𝐿 = 16) and
non-overlapping blocked system (𝑑 = 𝑏, 𝐿 = 64) happens at 𝑇 = 𝑇𝐶, as
would be expected. Intriguingly, the overlap (𝑑 < 𝑏, 𝐿 = 32) pushes the
system towards higher magnetization where spins appear more aligned. On
the other hand, the absence of overlap (𝑑 > 𝑏, 𝐿 = 128) causes smaller mag-
netization where spins appear more random.

3.2.2 Overlapping blocks induces bias

To show how sampling bias can affect the measured observables, we now intro-
duce an overlap between the blocks of the Isingmodel coarse graining (Fig. 3.3).
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In the native block-spin transformation, blocks do not overlap. Then, in terms of
spins, the linear distance 𝑑 between two blocks matches the block size 𝑏 = 𝑑 = 4
(Fig. 3.3A). When the distance between blocks is smaller than the block size,
𝑑 < 𝑏 (Fig. 3.3B), measurement overlap is created, while when 𝑑 > 𝑏 parts of
the system are not sampled.

Herewe look at combinations of block size 𝑏 = 4with distance between blocks
of 𝑑 = 2, 𝑑 = 4 and 𝑑 = 8. In order to preserve the effective system size (𝐿 = 16),
we thus perform simulations for 𝐿 = 32, 𝐿 = 64 and 𝐿 = 128, respectively.

We find that, for increasing overlap (𝑑 < 𝑏), the crossing occurs at 𝑇 > 𝑇𝑐
(Fig. 3.3C). This is because sharing spins increases the correlations between
blocks (pairwise andhigher-order),making itmore likely that the rescaled spins
point into the same direction. In other words, it biases the measurement of 𝑚 to-
wards order, increasing our estimated critical temperature.

For absent overlap (𝑑 > 𝑏), only every other block is measured. This decorre-
lates the spins near the borders of each block and, therefore, decreases the cor-
relation between blocks. As a consequence, the spin orientation of the blocked
system moves towards disorder, decreasing the measured magnetization 𝑚.

In conclusion, we find that overlapping blocks in the Isingmodel coarse grain-
ing can induce spurious correlations and bias the magnetization 𝑚(𝑇). This can
lead a subcritical system (𝑇 < 𝑇𝐶) to be considered critical due to apparent
invariance of 𝑚(𝑇). This overlapping will be a key mechanism in Chapter 4,
where we show that it can heavily bias measurements of criticality in neuronal
avalanches.

3.3 SAMPL ING B IA S AND 1/𝑓 NO I S E

3.3.1 What is 1/𝑓 noise?

The phenomena of 1/𝑓 noise is ubiquitous in nature [188–190]. It refers to the ten-
dency of the power spectral density of various systems to scale with frequency
𝑓 as a power-law

𝑃𝑆𝐷(𝑓 ) ∼ 1/𝑓 𝛽 (3.1)

with an exponent7 𝛽 > 0 . It was first observed in electric circuits, and sub-
sequently in many diverse phenomena ranging from earthquakes [191] to stock
market fluctuations [192] to heartbeat rhythms [193] to gravitationalwaves [194].

Mathematically, the power spectral density (PSD) of a timeseries 𝐴(𝑡) is de-
fined8 as

𝑃𝑆𝐷(𝑓 ) = | ̂𝐴(𝑓 )|2 (3.2)

7 While the term ”1/𝑓 noise” sometimes refers to 𝑃𝑆𝐷 ∼ 1/𝑓 𝛽 with 𝛽 = 1 (also known as pink
noise), here we use it in the broader sense to describe any 𝛽 > 0.

8 For this definition to be valid, 𝐴(𝑡) must be both stationary and square-integrable.
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A B

Figure 3.4: Power spectral density (PSD) and autocorrelation of branching processes.
A. PSD of branching processes with 𝑚 ∈ [0.9, 0.999]. The vertical lines cor-
respond to the cut-off frequency 𝑓0 = −log 𝑚/2𝜋 for both 𝑚 (traced line for
𝑚 = 0.999, solid line for 𝑚 = 0.9). B. Autocorrelation function 𝐶(𝑡) for the
same branching processes as A. Horizontal line corresponds to 𝐶(𝑡) = 1/𝑒.
Simulation data from branching processes with drive with average activity
𝐴∞ = 50 and 106 timesteps.

where ̂𝐴(𝑓 ) = ∫∞
−∞ 𝑒−2𝜋𝑖𝑓 𝑡𝐴(𝑡)𝑑𝑡 is the Fourier transform of 𝐴(𝑡) . For a sampled

(discrete) timeseries 𝐴𝑛 with sampling resolution 𝛿𝑡 , the PSD is given by

𝑃𝑆𝐷(𝑓 ) = 𝛿𝑡2 ∣
∞
∑

𝑛=−∞
𝑒−2𝜋𝑖𝑓 𝑛𝛿𝑡𝐴𝑛∣

2

(3.3)

Being discrete, 𝑃𝑆𝐷(𝑓 ) has a maximum frequency given by the Nyquist fre-
quency 𝑓𝑚𝑎𝑥 = 1/2𝛿𝑡 .

The PSD is also linked to the autocorrelation function (see Sec. 2.2.1) by the
Wiener–Khinchin theorem. It states that the autocorrelation function of a station-
ary process has a spectral decomposition given by the PSD of the process. For a
discrete timeseries with an autocorrelation function 𝐶(𝑡) we have

𝑃𝑆𝐷(𝑓 ) =
∣∣∣∣

∞
∑
𝑡=0

𝐶(𝑡)𝑒−𝑖(2𝜋𝑓 )𝑡∣∣∣∣

2

(3.4)

Thus, in theory the PSD and the autocorrelation function represent the same
information in real and frequency spaces. In practice, however, depending on
the situation on or the other may be better-suited to study a system.

To show that, and for what follows afterwards, lets obtain the spectrum of the
branching process (BP) with drive (Sec. 2.4.2). For a BP with branching param-
eter 𝑚, the autocorrelation function9 is

𝐶(𝑡) = 𝑒−𝑡𝛿𝑡/𝜏 (3.5)
9 It differs from the 𝐶(𝑡) derived in Sec. 2.4.4 in that here we separate the (now unitless) number

of steps from its temporal resolution, i.e. 𝑡 → 𝑡𝛿𝑡.
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where 𝜏 = −1/log 𝑚 is the autocorrelation time of the process. If we approxi-
mate the sum by an integral (making 𝛿𝑡 → 0), from Eq. 3.4 we have:

𝑃𝑆𝐷(𝑓 ) =
∣∣∣∣

∞
∑
𝑡=0

𝑒−𝑡𝛿𝑡/𝜏𝑒−𝑖(2𝜋𝑓 )𝑡∣∣∣∣

2

≈ ∣∫
∞

0
𝑒−𝑡/𝜏𝑒−𝑖(2𝜋𝑓 )𝑡dt ∣

2

≈ ∣ 1
2𝜋𝑖𝑓 + 1/𝜏 ∣

2
= 1

𝑓 2 + 1/4𝜋2𝜏2

(3.6)

If we define the cut-off frequency 𝑓0 ≡ 1/2𝜋𝜏 = −log 𝑚/(2𝜋) we then have:

𝑃𝑆𝐷(𝑓 ) ≈ 1
𝑓 2 + 𝑓 2

0
(3.7)

Thus, the PSD of a driven BP is a Lorenzian function. As 𝑚 → 1, 𝑓0 → 0 and
𝑃𝑆𝐷(𝑓 ) ∼ 1/𝑓 2. In the limit 𝑚 → 0 we find that 𝑓0 dominates and the PSD is flat.
We show the PSD for varying 𝑚 in Fig. 3.4A, and the respective 𝐶(𝑡) in Fig. 3.4B.

Lets suppose we are interested in using these measures to obtain the autocor-
relation time 𝜏. With the PSD, we can obtain 𝑚 by fitting Eq. 3.7 to the data, from
which we obtain an estimate ̂𝜏 = 1/2𝜋 ̂𝑓0. However, if we propagate the fitting
error Δ𝑓0 of ̂𝑓0 to 𝜏, we find that Δ𝜏 ∼ Δ𝑓0/ ̂𝑓 2

0 . Since 𝑓0 → 0 as 𝑚 → 1, using the
PSD to obtain 𝜏 is increasingly worse as the system gets closer to criticality.

Estimating 𝜏 from the autocorrelation function 𝐶(𝑡), on the other hand, suffer
from the reverse effect: due to limited data, there is a minimum value below
which 𝐶(𝑡) is dominated by noise. This translates into a maximum number of
timesteps that can be used in the fitting of𝐶(𝑡). In Fig. 3.4Bwe see that𝐶(𝑡) of the
system close to critical (𝑚 = 0.999) can be reliably fitted on a range of thousands
of timesteps, while for the subcritical one (𝑚 = 0.9) this range is much shorter.
This can be quantified by noting that 𝜏 corresponds to the number of timesteps
it takes for the signal to decay to 𝐶 = 1/𝑒 ≈ 0.37, which are ∼ 103 timesteps
for 𝑚 = 0.999 and ∼ 10 timesteps for 𝑚 = 0.9. Thus, using 𝐶(𝑡) to obtain 𝜏 is
increasingly worse as the system gets further to criticality.

In summary, both the PSD and autocorrelation function 𝐶(𝑡) can be used to
estimate 𝜏: the autocorrelation function 𝐶(𝑡) is more accurate closer to criticality,
while the PSD is better for more subcritical systems.

3.3.2 1/𝑓 noise in neuronal recordings

The study of neuronal activity using spectral analysis has been a big part of neu-
roscience since the invention of the electrocardiogram (EEG) around a century
ago. For decades, most of the research focused on the study and characterization
of neural oscillations, which are oscillatory patterns of neuronal activity.

Neural oscillations are divided in frequency bands, and have been linked to
a large array of physiological and cognitive mechanisms. For instance, activity
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Figure 3.5: Power spectral density from electrode measurements of neuronal activity.
PSD of Local Field Potential (LFP) measures in vitro from neuronal cultures
(blue), LFP in vivo from mice (orange) and intra-cranial Electroencephalog-
raphy (iEEG) in vivo from humans (green).

in the theta band (6 − 10 Hz) is linked to memory function in the hippocam-
pus, while an excess of activity in the delta band (0.5 − 2 Hz) defines slow-
wave (deep) sleep. These oscillations occur on top of an aperiodic, background
”noise” signal whose amplitude decays with increasing frequency. This back-
ground signal is an example of 1/𝑓 noise, and recently its origin has become a
major topic of study.

In neuroscience, 1/𝑓 noise has been observed in measurements of neuronal
activity using a vast range of techniques, such as EEG, MEG, LFP, ECoG and
fMRI. Crucially, the measured exponent 𝛽 has been observed to vary in a large
range 0 < 𝛽 < 4 (see Fig. 3.5). Many mechanisms have recently been proposed
to explain this variability in𝛽: changes in the firing rate [195], varying excitatory-
inhibitory (E-I) balance [196–198], aging [199] and frequency filtering [8, 200–
202].

The role each of those mechanisms play in variousmeasurements of neuronal
activity is still an open question. In particular, much has been debated whether
measurements of neuronal activity are subject to a low-pass frequency filter. Lo-
cal measurements such as the LFP and ECoG are believed to be affected by den-
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A B

Figure 3.6: Power spectral density of subsampled branching processes. A. PSD of a BP
with 𝑚 = 0.999 (close to critical) where events are observedwith probability
10−3 ≤ 𝑝 ≤ 1. B. Same as A for a BP with 𝑚 = 0.9 (subcritical). Subsampling
convolves the (Lorentzian) spectrum of the BP with the flat spectrum of an
uncorrelated process.

dritic filtering, caused by the intrinsic neuronal morphology [151, 203, 204].
More controversially [205], filtering could also come from capacitive proper-
ties of the extracellular tissue [8, 201, 202, 206].

In the following we propose a new mechanism based on sampling bias, and
show that it can explain shallow exponents 𝛽 < 2. We demonstrate how, cou-
pled with a filtering mechanism, it can explain the entire range 0 < 𝛽 < 4 of
exponents observed experimentally.

3.3.3 Varying exponents from sampling effects

Lets now explore how sampling bias can affect the spectra of near-critical dy-
namics. We first look into the driven branching process. Like in Sec. 3.1, we
consider that each event is observed (independently) with probability 𝑝. The
resulting PSDs are shown in Fig. 3.6.

By decorrelating activity, subsampling mixes the spectra of the BP (∼ 1/𝑓 2)
with that of an uncorrelated process (flat). While for low frequencies it main-
tains the underlying activity spectra, for high frequencies we obtain flat spectra.
The larger the subsampling (smaller 𝑝), the lower the frequency at which the
spectra becomes flat. Since the spectra of a subcritical BP is flat for frequencies
𝑓 ≪ 𝑓0 = −log𝑚/2𝜋 (Eq. 3.7), for small 𝑝 the spectra of a BP will be indistin-
guishable from that of an uncorrelated process. We see this in Fig. 3.6B, where
the spectra is completely flat for 𝑝 < 0.01. While subsampling can make the PSD
of a BP look uncorrelated (like in in Fig. 3.1), it does not alter the exponent 𝛽 = 2
of the power-law.
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The electrophysiological techniques (LFP, EEG, etc) used to record neuronal
spectra do not randomly subsample spikes, however. Rather, they directly or in-
directly represent weighted averages of (hundreds to billions of) neurons spik-
ing. Exactly how these techniques sample neuronal activity is a matter of ac-
tive research. Many sophisticated models have been developed in order to ex-
plore how features such as neuronal morphology and firing rate influence the
recorded electric potentials. [204, 207, 208].

As a baseline, these techniques record electric potentials from extracellular
synaptic currents of firing neurons [151, 203, 209]. Fromclassic eletromagnetism,
the electric potential 𝑉(r) generated by an arbitrary (static) charge distribution
measured at a point r has a multipole expansion:

𝑉(r) = 1
4𝜋𝜖

∞
∑
𝑙=0

𝐴𝑙(r)
𝑅𝑙+1 (3.8)

where 𝐴𝑙(r) incorporates the effects of the charge distribution, 𝜖 is the permittiv-
ity of the medium and 𝑅 = |r| is the distance from the charge distribution. In the
case of a single point charge 𝑄 we find that only the first term 𝑙 = 0 is non-zero,
resulting in a potential 𝑉mono known as an electric monopole:

𝑉mono = 1
4𝜋𝜖

𝑄
𝑅 (3.9)

In the case of two opposite charges +𝑄 and −𝑄 separated by a distance 𝑑, in the
limit 𝑅 ≫ 𝑑 we have

𝑉dip = 1
4𝜋𝜖

𝑄𝑑cos 𝜃
𝑅2 (3.10)

where 𝜃 is the angle from the line formed by the two charges and the pointwhere
𝑉dip is measured. This potential 𝑉dip is known as an electric dipole.

While synaptic currents can certainly generate electric potentialsmore compli-
cated thanmonopoles and dipoles, these are considered the twomost important
contributors [151, 203]. In particular, the electric potential generated by single
pyramidal neurons can be modeled as a dipole (see Fig. 3.7 for representations
of a monopole, dipole and pyramidal neuron). As we can see in Eqs. 3.9 and
3.10, the main difference between monopoles and dipoles is that the potential
of the monopole decays as ∼ 1/𝑅, while with the dipole it is ∼ 1/𝑅2. This im-
plies a sampling effect: the resulting electric potential from neuronal activity
can be sampled by an electrode from much further away if it is more similar to
a monopole than a dipole.

We decide to model this non-random local sampling with a virtual electrode
that samples its surrounding. The surrounding is made of a 2D arrangement of
𝑁 = 104 randomly-placed point neurons connected each to the 𝐾 = 103 nearest
neighbors. The dynamics is is given by a driven branching process, and spreads
locally 10. We parametrize the effective signal of a spiking neuron by considering

10 More precisely, the probability of activation by a neighbor decreases with distance with a Gaus-
sian distribution. This model is used in Chapter 4 to study neuronal avalanches. For an extensive
description of its details please check Sec. 4.2.
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Figure 3.7: Representation of electric potentials. A. Representation of an electric
monopole, caused by a single charge +𝑄. B. Representation of an electric
dipole, caused by a positive charge +𝑄 (a source) and a negative charge −𝑄
(a sink). C. Illustration of the dendritic tree of a pyramidal neuron. The api-
cal tree (top) is negatively charged,while the cell body (bottom) is positively
charged. As a first approximation, it can be modeled as a dipole.

that it decayswith distance 𝑅 from the neuron as ∼ 1/𝑅𝛾 with 𝛾 > 0. Thus, 𝛾 = 1
corresponds to a monopole, while 𝛾 = 2 is a dipole. Mathematically, the signal
𝑉𝑒𝑙𝑒𝑐 measured at our virtual electrode is given by

𝑉elec(𝑡) =
𝑁

∑
𝑖=0

𝐴𝑖(𝑡)
𝑅𝛾

𝑖
(3.11)

where 𝐴𝑖(𝑡) is the activity state (0 or 1) of neuron 𝑖 situated at a distance 𝑅𝑖 from
the electrode.

The resulting PSD from this sampling scheme is shown in Fig. 3.8. We find
that, contrary to simple subsampling, this spatial (coarse) sampling decreases
the exponent of 𝑃𝑆𝐷 ∼ 1/𝑓 𝛽 while maintaining the power-law shape11. The
larger 𝛾 is, the more local the sampling and the flatter the spectra (smaller 𝛽).
Thus, simple sampling effects could explain flatter exponents 𝛽 < 2 in neu-
ronal recordings. Importantly, it would imply that electrophysiological record-
ings with 𝛽 < 2 (such as LFP in vitro of Fig. 3.5) are the result of poor sampling
of the underlying activity.

In order to explain heavier exponents 𝛽 > 2 wemust introduce another mech-
anism. As mentioned in Sec. 3.3.1, extracellular techniques are subject to atten-
uating effects caused by brain tissue (in intra-cranial measurements) and bone
(in EEG). These effects may block higher frequencies, generating a low-pass fre-
quency filter that effectively introduces spurious correlations in the measured
signal [8, 201, 202, 206]. We model this using a power-law shot noise frequency
filter [200, 210]. With this filter, the signal generated from an activation at time

11 The flat spectra observed as 𝑓 approaches the highest frequency (0.5 in units of 1/timestep, which
is the Nyquist frequency) is due to aliasing effects and can be considered an artifact of the PSD
estimation.
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Figure 3.8: Power spectral density of a virtual electrode with a 1/𝑅𝛾 field of view. A.
PSD of a BP with 𝑚 = 0.999 (close to critical) where events are observed a
virtual electrode whose field of view decreases with distance 𝑅 as 1/𝑅𝛾. B.
Same as A for a BP with 𝑚 = 0.9 (subcritical). The underlying dynamics is
made of of 𝑁 = 104 units each connected to the nearest 𝐾 = 103 neighbours
in a 2D space with distance-dependent weights. The flat spectra for high
frequencies 𝑓 is the result of aliasing effects.

𝑡𝑖 does not decay instantly (a delta peak), but instead decays with a power-law.
The activity at time 𝑡 > 𝑡𝑖 from this single activation is given by

𝐹(𝑡, 𝑡𝑖) = (𝑡 − 𝑡𝑖)
1−𝛾𝑓 /2 (3.12)

where 𝛾𝑓 ∈ (0, 2) is the shot noise exponent. It can be shown [210] that if the
activity is uncorrelated (i.e. 𝑡𝑖 are drawn from a Poisson distribution) then the
process defined by Eq. 3.12 results in 1/𝑓 noise with exponent 𝛾𝑓 : 𝑃𝑆𝐷 ∼ 1/𝑓 𝛾𝑓 .
Note that in the limit 𝛾𝑓 → 2 we have 𝐹(𝑡, 𝑡𝑖) → 1, and activity from the single
spike never decays. Thus, this process can only generate exponents 𝛾𝑓 < 2.

By combining the power-law shot noise filter with the branching dynamics,
we can generate heavier PSD exponents 2 ≤ 𝛽 < 4. This is due to the convolution
theorem: It states that, for two functions 𝑓 and 𝑔, the Fourier transform F of the
convolution 𝑓 ⋆ 𝑔 is given by the product of the Fourier transforms of 𝑓 and 𝑔:

F [𝑓 ⋆ 𝑔] = F [𝑓 ]F [𝑔] (3.13)

Since the PSD is the squared magnitude of the Fourier transform, it means that
convolving the underlying branching processwith the power-law shot noise pro-
cessmultiplies their PSDs: the subsampled activity can be interpreted as the con-
volution of a correlated process (the dynamics) with an uncorrelated one (the
subsampling). From Eq. 3.7 we then have:

𝑃𝑆𝐷𝑓 𝑖𝑙𝑡(𝑓 ) ≈ 1
𝑓 𝛾𝑓

1
𝑓 2 + 𝑓 2

0
(3.14)

which results in 𝑃𝑆𝐷 ∼ 1/𝑓 𝛾𝑓 for 𝑓 < 𝑓0 (which depends on 𝑚) and 𝑃𝑆𝐷 ∼
1/𝑓 2+𝛾𝑓 for higher frequencies. In Fig. 3.9 we show the resulting PSDs from
branching processes filtered with power-law shot noise.
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Figure 3.9: Power spectral density filtered with power-law shot noise. A. PSD of a BP
with 𝑚 = 0.999 (close to critical) subject to a power-law shot noise filter
with exponent 𝛾𝑓 < 2. B. Same as A for a BP with 𝑚 = 0.9 (subcritical).
The underlying dynamics is made of of 𝑁 = 104 units each connected to the
nearest 𝐾 = 103 neighbors in a 2D space with distance-dependent weights.
The flat spectra for high frequencies 𝑓 is the result of aliasing effects.

Naturally, we can combine the 1/𝑅𝛾 spatial sampling with the 1/𝑓 𝛾
𝑓 frequency

filtering in order to generate the entire range of 1/𝑓 𝛽 exponents 0 < 𝛽 < 4. This
can in principle explain any PSD of the form

𝑃𝑆𝐷(𝑓 ) ∼ 1
𝑓 𝛾𝑓 +𝛽′

+ 𝑓 2
0 𝑓 𝛾𝑓

(3.15)

with the constraints 0 ≤ 𝛽′ ≤ 2 and 0 ≤ 𝛾𝑓 < 2. In Fig. 3.11 we show how the
measured exponent 𝛽 = 𝛾𝑓 + 𝛽′ varies with sampling (𝛾) and filtering (𝛾𝑓 ). As
mentioned above, however, many mechanisms have been proposed to generate
the variability in 𝛽 observed in neuronal PSDs [196, 199, 203, 211, 212]. Thus, in
order to identify if a mechanism is responsible for 𝛽 it is important to find its
unique signatures.

The multi-step regression estimator (”MR Estimator”) [213–215] can be used
to obtain a subsampling-invariant estimation 𝑚𝑀𝑅 of the branching parameter
𝑚. In Fig. 3.10A we show that it is also capable of recovering 𝑚 under spatial
(coarse) sampling. On the other hand, the single-step estimation12 𝑚1 can be
heavily biased under spatial sampling. Very close to criticality (𝑚 = 0.999) a
limited field of view (1/𝑅𝛾 with large 𝛾) can accurately sample the dynamics,
and result in 𝑚1 ≈ 𝑚. For subcritical (𝑚 = 0.9) dynamics, however, as 𝛾 in-
creases 𝑚1 increasingly underestimates 𝑚, similarly to the effect of subsampling
(see Sec. 4.1).

Since 𝑚𝑀𝑅 is essentially invariant under our spatial sampling and 𝑚1 is not,
we can define the amount of bias Δ𝑚 ≡ 𝑚𝑀𝑅 − 𝑚1 as a signature of the sampling

12 Obtained here by fitting the autocorrelation 𝐶(𝑡) to Eq. 2.33.
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A B C

Figure 3.10: Branching parameter under spatial (coarse) sampling and temporal fil-
tering. A. Single (𝑚1) and multi-step (𝑚𝑀𝑅) estimations of the branching
parameter 𝑚 of a branching process, sampled with a virtual electrode with
a 1/𝑅𝛾 field of view. B. Amount of bias Δ𝑚 = 𝑚𝑀𝑅 − 𝑚1 in the estimation
of 𝑚 caused by the spatial sampling.C. Effect of (power-law shot noise) fre-
quency filtering on the estimation of 𝑚. The timeseries is convolved with a
filter that produces a 1/𝑓 𝛾𝑓 PSD.

mechanism. As seen in Fig. 3.10B, we can have 0 < Δ𝑚 < 0.5 depending on 𝑚.
On the other hand, the presence of a low-pass frequency filter adds spurious
temporal correlations in the dynamics, and quickly drives both 𝑚𝑀𝑅 and 𝑚1
to 1. We observe this in Fig. 3.10C, where the power-law shot noise filter (that
generates 𝑃𝑆𝐷 ∼ 1/𝑓 𝛾𝑓 ) results in 𝑚𝑀𝑅, 𝑚1 ≈ 1 for 𝛾𝑓 > 0.5. Thus, in the model,
essentially any filtering of this type results in Δ𝑚 ≈ 0.

In conclusion, Δ𝑚 can be used as a signature of the spatial sampling + fre-
quency filtering mechanism that explains 0 ≤ 𝛽 < 4 in the PSD. It predicts
that poorly-sampled dynamics results in both shallow exponents (𝛽 < 2) and
Δ𝑚 > 0, while dynamics subject to low-pass filtering have 𝛽 > 2 and Δ𝑚 = 0.

3.3.4 Analysis of experimental data

In the previous section we described a combination of two mechanisms (spa-
tial sampling and frequency filtering) capable of generating the PSD exponents
observed in various measures of neuronal activity, and shown that spatial un-
dersampling has a signature Δ𝑚 > 0. In this section we analyze experimental
data of different sources, and test if this signature can be found.

As previously mentioned, not only 𝛽 = 4 is the hard limit of exponents ob-
served experimentally, but the functional form of PSDs with heavy exponents
2 < 𝛽 < 4 has been observed to nicely follow Eq. 3.14 [8, 216].We exemplify that
in Fig. 3.12, where PSDs obtained from different experiments in vivo all seem to
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Figure 3.11: PSD exponent 𝛽 from a combination of filtering and sampling. By com-
bining the 1/𝑅𝛾 electrode field of view (which decreases sampling with
increasing 𝛾) with the 1/𝑓 𝛾𝑓 frequency filter the entire range of exponents
0 ≤ 𝛽 < 4 can be obtained.

follow a “𝛾𝑓 + 2” scheme, with a varying 𝛾𝑓 exponent for low frequencies and
𝛾𝑓 + 2 for high frequencies.

This functional form is important, as it suggests activity described by a well-
sampled correlated process convolved with a frequency filter13. Moreover, it
suggests different dynamical states in different areas/behaviors. The functional
form in Fig. 3.12A, for instance, indicates not only recordings subject to a 1/𝑓
filter, but that dynamics during slow-wave sleep were closer to a critical state
than during awakeness14. Likewise, the PSD of Fig. 3.12B not only indicates a
1/𝑓 0.5 filter, but that dynamics in the CA3 region of the hippocampus is closer
to criticality than in CA1. The anatomical structures of these regions differ, with
CA3 being more recurrent and CA3 being more feedfoward. Thus, it supports
the notion that more recurrent areas of the brain have longer timescales, and are
thus closer to criticality.

In the case of in vitro cultures, on the other hand, it is unlikely that the ex-
tracelular medium (usually a saline solution) provides any type of frequency
filtering. Thus, PSD exponents in vitro should be 𝛽 ≤ 2, and 𝛽 ≪ 2 should result

13 Another functional form observed in experiments is 𝑃𝑆𝐷 ∼ 𝑎/𝑓 2 + 𝑏/ (𝑓 2
0 + 𝑓 2) with 𝑎, 𝑏 >

0. Contrary to the one explored here, it suggests a combination of processes with different
timescales [218, 219].

14 This is compatible with other literature results on the relationship between behavior and dynam-
ical states, see Sec. 2.5.2.
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Figure 3.12: PSDs observed in different experiments. A. PSD of LFP recordings of
the cat visual cortex during awakeness (black) and slow-wave sleep (SWS,
gray). Dotted lines correspond to power-laws 1/𝑓 𝛽. Adapted with permis-
sion from [8]. B. PSD of LFP recordings of the mouse hippocampus re-
gions CA1 (red) and CA3 (blue, plotted with an offset) during sleep, from
32 channels each. Data from [217]. C. PSD of human ECoG recordings.
The blue line corresponds to the original spectra, while the green line is the
PSD multiplied by a form factor 1 + (𝑓 /𝑓0)4−𝜉𝐿 , with 𝜉𝐿 = 2 and 𝑓0 = 75Hz.
Adapted from [216].

in Δ𝑚 > 0. PSD exponents in vivo, on the other hand, should have 𝛽 > 2 and
Δ𝑚 ≈ 0.

In order to test these hypotheses we analyze electrophysiological data from
both in vivo and in vitro experiments, which we briefly describe in the follow-
ing. The in vitro LFP data comes from 𝑛 = 49 recording sessions (with 60 elec-
trodes) of cell cultures at varying stages of development (between DIV 7 and
DIV 28), derived from the rat hippocampus. For the in vivo data, we use openly
available data from rat, monkey and human sources. The rat data is described
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Figure 3.13: Analysis of experimental data from various sources. Red: in vitro LFP
recordings from rat hippocampal cell cultures during development. Blue:
LFP recordings of rat hippocampus during sleep, using data from [217].
Green: LFP recordings from monkey LFP (various regions), using data
from [220]. Blue: intracranial EEG recordings from humans during task,
using data from [221]. Black line: Simulation with 𝑚 = 0.99, and a vary-
ing electrode field of view (varying 𝛾) changing how well it samples the
activity.

in [222], and consists of 𝑛 = 442 recording sessions of the hippocampus of
rats performing a variety of behaviors. It totals more than 200h of recordings
from the CA1, CA3, DG and EC2-EC5 areas of the hippocampus. The monkey
data comes from whole-hemisphere LFP recordings of a macaque encompass-
ing various cortical regions (at various depths) and over a period of months. It
is described in [220]. The human data is described in [221], and corresponds
to intra-cranial EEG recordings of the frontal cortex of 𝑛 = 7 epileptic patients
performing a memory task.

We analyze the datasets by fitting the tail of the PSDwith a 1/𝑓 𝛽 function, and
calculating the amount of bias Δ𝑚 as described in Sec. 3.3.3. In order to limit
possible bias due to effects not being modeled (such as oscillations) we apply
a stringent censor on the data by discarding data points where the root mean
square error (RMSE) of either the PSD or 𝑚 fit is larger than 0.4. The results are
shown in Fig. 3.13.

We find that, as predicted by the model, shallow exponents 𝛽 < 2 are accom-
panied by a positive amount of bias Δ𝑚, mostly in the in vitro cultures. Thus
it suggests that activity from the developing cultures is poorly sampled by LFP
recordings. This could be due to eithermorphological differences resulting from
the 2D embedding, or low density compared to in vivo, as cultures are a factor
of 10-100 sparser [175, 176].
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Results from the different in vivo systems, however, indicate spectra with a
vast range of exponents 𝛽, all compatible with the dynamics being either well-
sampled, or with filtering masking any undersampling effects (Δ𝑚 ≈ 0). The
effects of poor sampling in Δ𝑚 and 𝛽 in data line-up well with what was found
in themodel, represented in Fig. 3.13 by a dynamics close to criticality (𝑚 = 0.99,
black line) sampled with a 1/𝑅𝛾 field of view and without filtering.

Our results show that Δ𝑚 can be used to detect bias from poor sampling in
electrophysiological measures of neuronal activity. They show that in vivo mea-
sures can be poorly-sampled, while in vivo measures can be subject to low-pass
frequency filtering that introduces spurious temporal correlations in the dynam-
ics. That said, care must be taken in order to properly interpret the results. On
one hand, due to the stringent censoring, our results are only valid for dynam-
ics that are well-described by auto-regressive dynamics. Datasets where oscil-
lations dominate and make the estimations of 𝑚𝑀𝑅 and 𝑚1 unreliable are re-
moved, for instance.

More importantly, our results are compatible with the existing literature that
claims variousmechanisms to explain the variability in𝛽 [195–199, 223]: changes
in firing rate, E-I balance and others could effectively result in a diminished ca-
pacity of the electrode to sample neuronal activity. Thus, our model presents an
explanation of 𝛽 in terms of dynamical effects which could be implemented by
many different physiological mechanisms.





4
E F F ECT S OF SAMPL ING IN MEASURE S OF NEURONAL
AVALANCHES

This chapter contains the main result of this thesis [224]. Here, we show that
neuronal avalanches (Sec. 2.2) obtained with coarse measures (such as EEG
and LFP) are not indicatives of criticality, as considerably subcritical (but still
correlated) dynamics can generate the same signatures. On the other hand, we
show that subsampled activity (spikes) can differentiate critical from subcrit-
ical dynamics. This solves a contradiction in the literature: the characteristic
power-laws of criticality are obtained in vivo under the most varied experimen-
tal settings under coarse measures, but never using spikes (see Sec. 2.5). In light
of our results, we can reinterpret decades of results on criticality in neuronal
avalanches as being actually evidence for a baseline subcritical dynamics.

Results shown here where obtained initially by me, under supervision of Dr.
Viola Priesemann (V.P.). The model was later reimplemented in C++ by Franz
Paul Spitzner (F.P.S.) for higher statistical significance, and the text and figures
of this chapter were produced in conjunction with F.P.S. and V.P..

4.1 THE EXP ER IMENTAL CONTRAD I C T ION

For more than two decades, it has been argued that the cortex might operate at
a critical point [1–6]. The criticality hypothesis states that by operating at a criti-
cal point, neuronal networks could benefit from optimal information-processing
properties. Propertiesmaximized at criticality include the correlation length [13],
the autocorrelation time [4], the dynamic range [28, 29] and the richness of
spatio-temporal patterns [30, 225].

Evidence for criticality in the brain often derives from measurements of neu-
ronal avalanches. Neuronal avalanches are cascades of neuronal activity that
spread in space and time. If a system is critical, the probability distribution of
avalanche size 𝑝(𝑆) follows a power law 𝑝(𝑆) ∼ 𝑆−𝛼 [13, 51]. Such power-law
distributions have been observed repeatedly in experiments since theywere first
reported by Beggs & Plenz in 2003 [1].

However, not all experiments have produced power laws and the criticality
hypothesis remains controversial. It turns out that results for cortical recordings
in vivo differ systematically:

Studies that use what we here call coarse-sampled activity typically produce
power-law distributions [1, 131, 132, 136, 138, 140, 145, 148, 156, 226, 227]. In
contrast, studies that use sub-sampled activity typically do not [8, 100, 178, 179,
226, 228]. Coarse-sampled activity include LFP, M/EEG, fMRI and potentially
calcium imaging, while sub-sampled activity is front-most spike recordings. We
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hypothesize that the apparent contradiction between coarse-sampled (LFP-like)
data and sub-sampled (spike) data can be explained by the differences in the
recording and analysis procedures.

In general, the analysis of neuronal avalanches is not straightforward. In order
to obtain avalanches, one needs to define discrete events. While spikes are dis-
crete events by nature, a coarse-sampled signal has to be converted into a binary
form. This conversion hinges on thresholding the signal, which can be problem-
atic [113–115, 211]. Furthermore, events have to be grouped into avalanches, and
this grouping is typically not unique [179]. As a result, avalanche-size distribu-
tions depend on the choice of the threshold and temporal binning [1, 133].

Here, we show how thresholding and temporal binning interact with a (so far
ignored) effect. Under coarse-sampling, neighboring electrodes may share the
samefield-of-view. This creates a distance-dependentmeasurement overlap so that
the activity that is recorded at different electrodesmay show spurious correlations,
even if the underlying spiking activity is fully uncorrelated. We show that the
inter-electrode distancemay therefore impact avalanche-size distributions more
severely than the underlying neuronal activity.

In the following, we explore the role of the recording and analysis procedures
on a generic, locally-connected network of spiking neurons. We compare appar-
ent signs of criticality under sub-sampling versus coarse-sampling. To that end,
we vary the distance to criticality of the underlying system over a wide range,
from uncorrelated (Poisson) to highly-correlated (critical) dynamics. We then
derive signatures of criticality—as is done in experiments—and study how re-
sults depend on electrode distance and temporal binning.

4.2 MODEL DE SCR I P T ION

4.2.1 Network model

Our model is comprised of a two-level configuration, where a 2D network of
𝑁N = 160000 spiking neurons is sampled by a square array of 𝑁E = 8 × 8 virtual
electrodes. Neurons are distributed randomly in space (with periodic boundary
conditions) and, on average, nearest neighbors are 𝑑N = 50µm apart. While the
model is inherently unit-less, it is more intuitive to assign some length scale— in
our case the inter-neurondistance 𝑑N —to set that scale: all other size-dependent
quantities can then be expressed in terms of the chosen 𝑑N. For instance, the
linear system size 𝐿 can be derived by realizing that the random placement of
neurons corresponds to an ideal gas. It follows that 𝐿 = 2√𝑁N 𝑑N = 4c𝑚 for
uniformly distributed neurons. (For comparison, on a square lattice, the pack-
ing ratio would be higher and it is easy to see that the system size would be
√𝑁N 𝑑N.) Given the system size and neuron number, the overall neuronal den-
sity is 𝜌 = 100/m𝑚2. With our choice of parameters, the model matches typical
experimental conditions in terms of inter-neuron distance, system size and neu-
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Table 4.1: Values and descriptions of the model parameters.

Symbol Value Description

Δ𝑡 2 − 16ms Time-bin size (duration) for temporal binning
Θ𝑘 3 Activity threshold, in units of standard deviations of the time series of

electrode 𝑘
𝛿𝑡 2ms Simulation time step
𝑟 1Hz Average spike rate
𝑁N 1.6 × 105 Number of neurons
𝑑N 50µm Inter-neuron distance (measured between nearest neighbors)
𝐿 4 cm Linear system size
𝜌 100/mm2 Neuronal density
𝐾 1000 Average network degree (outgoing connections per neuron)
𝑑m𝑎𝑥 1.78mm Connection length; all neurons within 𝑑m𝑎𝑥 are connected
𝜎 300µm Effective length of synaptic connections, sets the distance-dependence

of the probabilities of recurrent activations
𝑁E 8 × 8 Number of electrodes
𝑑E 50−500µm Inter-electrode distance
𝑑∗
E 10µm Dead-zone around each electrode (no neurons present)

ron density (see Table 4.1 for details). The implementation of the model in C++,
and the python code used to analyze the data and generate the figures, are avail-
able online at https://github.com/Priesemann-Group/criticalavalanches.

4.2.2 Topology

We consider a topology that enforces local spreading dynamics. Every neuron is
connected to all of its neighbors within a threshold distance 𝑑m𝑎𝑥. The threshold
is chosen so that on average 𝐾 = 103 outgoing connections are established per
neuron. We thus seek the radius 𝑑m𝑎𝑥 of a disk whose area contains 𝐾 neurons.
Using the already known neuron density, we find 𝑑m𝑎𝑥 = √𝐾/𝜋𝜌 ≈ 1.78mm.
For every established connection, the probability of a recurrent activation de-
creases with increasing neuron distance. Depending on the particular distance
𝑑𝑖𝑗 between the two neurons 𝑖 and 𝑗, the connection has a normalized weight

𝑤𝑖𝑗 = 𝑒−𝑑2
𝑖𝑗/2𝜎2

/ Ω𝑖 (with normalization constantΩ𝑖 = ∑𝑗′ 𝑒−𝑑2
𝑖𝑗′ /2𝜎2

).Ourweight
definition approximates the distance dependence of average synaptic strength.
The parameter 𝜎 sets the effective distance over which connections can form
(𝑑max is an upper limit for 𝜎 and mainly speeds up computation.) In the limit
𝜎 → ∞, the network is all-to-all connected. In the limit 𝜎 → 0, the network is

https://github.com/Priesemann-Group/criticalavalanches
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completely disconnected. Therefore, the effective connection length 𝜎 enables
us to fine tune how local the dynamic spreading of activity is. In our simulations,
we choose 𝜎 = 6𝑑N = 300µm. Thus, the overall reach is much shorter than 𝑑m𝑎𝑥
(𝜎 ≈ 0.06 𝑑m𝑎𝑥).

4.2.3 Dynamics

To model the dynamic spreading of activity, time is discretized to a chosen sim-
ulation time step, here 𝛿𝑡 = 2ms, which is comparable to experimental evidence
on synaptic transmission [229]. Our simulations run for 106 time steps on an en-
semble of 50 networks for each configuration (combination of parameters and
dynamic state). This corresponds to ∼ 277 hours of recordings for each dynamic
state.

The activity spreading is modeled using the dynamics of a branching pro-
cess with external drive [110, 178]. At every time step 𝑡, each neuron 𝑖 has a
state 𝑠𝑖(𝑡) = 1 (spiking) or 0 (quiescent). If a neuron is spiking, it tries to ac-
tivate its connected neighbors—so that they will spike in the next time step.
All of these recurrent activations depend on the branching parameter 𝑚: Every
attempted activation has a probability 𝑝𝑖𝑗 = 𝑚 𝑤𝑖𝑗 to succeed. (Note that the
distance-dependent weights are normalized to 1 but the activation probabilities
are normalized to𝑚.) In addition to the possibility of being activated by its neigh-
bors, each neuron has a probability ℎ to spike spontaneously in the next time
step. After spiking, a neuron is reset to quiescence in the next time step if it is
not activated again.

Ourmodel gives us full control over the dynamic state of the system—and its
distance to criticality. The dynamic state is described by the intrinsic timescale 𝜏.
We can analytically calculate the intrinsic timescale 𝜏 = −𝛿𝑡/ ln (𝑚), where 𝛿𝑡 is
the duration of each simulated time step. Note that 𝑚—the control parameter
that tunes the system—is set on the neuron level while 𝜏 is a (collective) net-
work property (that in turn allows us to deduce an effective 𝑚). As the system
is pushed more towards criticality (by setting 𝑚 → 1), the intrinsic timescale
diverges 𝜏 → ∞.

For consistency, we measure the intrinsic timescale during simulations. To
that end, the (fully sampled) population activity at each time step is given by
the number of active neurons 𝐴(𝑡) = ∑𝑖 𝑠𝑖(𝑡). A linear least-squares fit of the
autoregressive relation 𝐴(𝑡 +1) = 𝑒−𝛿𝑡/𝜏𝐴(𝑡)+𝑁Nℎ over the full simulated time
series yields an estimate ̂𝜏 that describes each particular realization.

By adjusting the branching parameter 𝑚 (setting the dynamic state) and the
probability for spontaneous activations ℎ (setting the drive), we control the dis-
tance to criticality and the average stationary activity. The activity is given by
the average spike rate 𝑟 = ℎ/(𝛿𝑡(1 − 𝑚)) of the network. For all simulations, we
fix the rate to 𝑟 = 1H𝑧 in order to avoid rate effects when comparing different
states (see Table 4.3 for the list of parameter combinations). Note that, due to



4.2 MODEL DE SCR I P T ION 69

the non-zero drive ℎ and the desired stationary activity, the model cannot be
perfectly critical ( ̂𝜏 → ∞, see Table 4.3).

4.2.4 Coalescence Compensation

With our probability-based update rules, it may happen that target neurons are
simultaneously activated by multiple sources. This results in so-called coales-
cence effects that are particularly strong in our model due to the local activity
spreading [111]. For instance, naively setting 𝑚 = 1 (with 𝜎 = 300µm) would
result in an effective (measured) �̂� ≈ 0.98, which has considerably different
properties. Compared to e.g. 𝑚 = 0.999 this would result in a 20-fold decrease
in 𝜏.

In order to compensate these coalescence effects, we apply a simple but ef-
fective fix: If an activation attempt is successful but the target neuron is already
marked to spike in the next time step, another (quiescent) target is chosen. Be-
cause our implementation stores all the connected target neurons as a list sorted
by their distance to the source, it is easy to activate the next neuron in that list.
Thereby, the equivalent probability of the performed activation is as close to the
originally attempted one as possible.

4.2.5 Virtual Electrode Recordings

Our simulations are designed to mimic sampling effects of electrodes in experi-
mental approaches. To simulate sampling, we use the readout of 𝑁E = 64 virtual
electrodes that are placed in an 8 × 8 grid. Electrodes are separated by an inter-
electrode distance that we specify in multiples of inter-neuron distance 𝑑N. It is
kept constant for each simulation andwe study the impact of the inter-electrode
distance by repeated simulations spanning electrode distances between 1𝑑N =
50µm and 10𝑑N = 500µm. The electrodes are modeled to be point-like objects
in space that have a small dead-zone of 𝑑∗

E = 𝑑N/5 = 10µm around their ori-
gin. Within the dead-zone, no signal can be recorded (in fact, we implement
this by placing the electrodes first and the neurons second—and forbid neuron
placements too close to electrodes.)

Using this setup, we can apply sampling that emulates either the detection of
spike times or LFP-like recordings. To model the detection of spike times, each
electrode only observes the single neuron that is closest to it. Whenever this par-
ticular neurons spikes, the timestamp of the spike is recorded. All other neurons
are neglected—and the dominant sampling effect is sub-sampling. On the other
hand, to model LFP-like recordings, each electrode integrates the spiking of all
neurons in the system. The contribution of a spike, e.g. from neuron 𝑖 to elec-
trode 𝑘, decays as 1/𝑑𝑖𝑘 with the neuron-to-electrode distance. (Changing the
dependence to 𝑑−2

𝑖𝑘 has no qualitative impact on the results.) The total signal
of the electrode at time 𝑡 is then 𝑉𝑘(𝑡) = ∑𝑁N

𝑖 𝑠𝑖(𝑡)/𝑑𝑖𝑘. (Diverging electrode
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signals are prevented by the forbidden zone around the electrodes.) For such
coarse-sampled activity, all neurons contribute to the signal and the contribu-
tion is weighted by their distance.

4.2.6 Avalanches

Taking into account all 64 electrodes, a new avalanche starts (by definition [1])
when there is at least one event (spike) in a time bin—given there was no
event in the previous time bin (see Fig. 4.2). An avalanche ends whenever an
empty bin is observed (no event over the duration of the time bin). Hence, an
avalanche persists for as long as every consecutive time bin contains at least one
event—which is called the avalanche duration 𝐷. From here, it is easy to count
the total number of events that were recorded across all electrodes and included
time bins—which is called the avalanche size 𝑆. The number of occurrences of
each avalanche size (or duration) are sorted into a histogram that describes the
avalanche distribution.

4.2.7 Analysis of Avalanches under Coarse and Sub-sampling

We analyze avalanche size distributions in a way that is as close to experimental
practice as possible (see Fig. 4.2). From the simulations described above, we
obtain two outputs from each electrode: a) a list containing spike times of the
single closest neuron and b) a time series of the integrated signal to which all
neurons contributed.

In case of the (sub-sampled) spike times a), the spiking events are already
present in binary form. Thus, to define a neural avalanche, the only required
parameter is the size of the time bin Δ𝑡 (for instance, we may choose Δ𝑡 = 4ms).

In case of the (coarse-sampled) time series b), binary events need to be ex-
tracted from the continuous electrode signal. The extraction of spike times from
the continuous signal relies on a criterion to differentiate if the set of observed
neurons is spiking or not—which is commonly realized by applying a thresh-
old. (Note that now thresholding takes place on the electrode level, whereas
previously, an event belonged to a single neuron.) Here, we obtain avalanches
by thresholding as follows: First, all time series are frequency filtered to 0.1Hz <
𝑓 < 200Hz. This demeans and smoothes the signal (and reflects commonhardware-
implemented filters of LFP recordings). Second, the mean and standard devia-
tion of the full time series are computed for each electrode. Themean is virtually
zero due to the high-pass filtering. Each electrode’s threshold is set to three stan-
dard deviations above the mean. Third, for every positive excursion of the time
series (i.e. 𝑉𝑘(𝑡) > 0), we recorded the timestamp 𝑡 = 𝑡m𝑎𝑥 of the maximum
value of the excursion. An event was defined when 𝑉𝑘(𝑡m𝑎𝑥) was larger than the
threshold Θ𝑘 of three standard deviations of the (electrode-specific) time series.
(Whenever the signal passes the threshold, the timestamps of all local maxima



4.3 R E SULT S 71

become candidates for the event; however, only the one largest maximum be-
tween two crossings of the mean assigns the final event-time.) Once the continuous
signal of each electrode has been mapped to binary events with timestamps, the
remaining analysis steps were the same for coarse-sampled and sub-sampled
data.

Table 4.2: Fitted exponents of 𝛼 ∼ Δ𝑡−𝛽.

Dynamic state 𝛽

𝑑E = 200µm 𝑑E = 400µm

in vitro (LFP) [1] 0.16 ± 0.01
Critical (coarse) 0.113 ± 0.001 0.141 ± 0.001
Reverberating (coarse) 0.127 ± 0.003 0.156 ± 0.002
Subcritical (coarse) 0.159 ± 0.004 0.231 ± 0.016
Critical (spikes) 0.143 ± 0.010 0.123 ± 0.005

4.2.8 Power-law fitting and shape collapse

Avalanche size and duration distributions are fitted to power-laws using the
powerlaw package [230]. The shape collapse of Eq. 4.6 is done following the al-
gorithmdescribed in [128]. Briefly, the avalanche profiles 𝑠(𝑡, 𝐷) of all avalanches
with the same duration 𝐷 are averaged, and the resulting curve is scaled to 𝑡/𝐷
and interpolated on 1000 points in the [0, 1] range. Avalanches with 𝐷 < 4 , or
with less than 20 realizations are removed. The chosen collapse exponent 𝛾 is
the one that minimizes the error function:

𝐸 = ⟨Var(𝑋𝐷/𝐷𝛾−1)⟩
Δ𝑋2 (4.1)

where 𝑋𝐷(𝑡/𝐷) is the interpolated average shape of avalanches with size 𝐷, and
Δ𝑋 = max𝑡,𝐷(𝑋𝐷/𝐷𝛾−1) − min𝑡,𝐷(𝑋𝐷/𝐷𝛾−1). The variance Var(.) is calculated
over all valid 𝐷, and the mean ⟨.⟩ is taken over the scaled duration 𝑡/𝐷. For inter-
polation andminimizationweuse the scipy [231] functions InterpolatedUnivariateSpline
and minimize, respectively.

4.3 R E SULT S

The aim of this study is to understand how the sampling of neural activity
affects the inference of the underlying collective dynamics. It is not about intro-
ducing a novel model that might generate critical dynamics. Therefore, we use
an established phenomenological model, where the distance to criticality can
be precisely tuned. To study sampling effects, we use a two-level setup inspired
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by [155]: An underlying networkmodel, onwhich activity is then sampledwith a
grid of 8×8 virtual electrodes. All parameters of themodel, the sampling and the
analysis are closely matched to those known from experiments (see Methods).

In order to evaluate sampling effects, we want to precisely set the underly-
ing dynamics. Therefore, we employ the established branching model, which is
well understood analytically [30, 110, 111, 155, 178]. Inspired by biological neu-
ronal networks, we simulate the branching dynamics on a dense 2D topology
with 𝑁N = 160 000 neurons where each neuron is connected to 𝐾 ≈ 1000 lo-
cal neighbors. To emphasize the locality, the synaptic strength of connections
decays with the distance 𝑑N between neurons. For a detailed comparison with
different topologies, see the Supplemental Information (Fig. 4.8).

4.3.1 The branching parameter 𝑚 sets the distance to criticality

In order to compare apparent signatures of criticality with the true, underlying
dynamics, we first give some intuition about the branching model. The branch-
ing parameter 𝑚 quantifies the probability of postsynaptic activations, or in other
words, how many subsequent spikes are caused (on average) by a single spike.
With increasing 𝑚 → 1, a single spike triggers increasingly long cascades of ac-
tivity. These cascades determine the timescale over which fluctuations occur in
the population activity— this intrinsic timescale 𝜏 describes the dynamic state
of the system and its distance to criticality.

The intrinsic timescale can be analytically related to the branching parameter
by 𝜏 ∼ −1/ ln (𝑚). As 𝑚 → 1, 𝜏 → ∞ and the population activity becomes
“bursty”. We illustrate this in Fig. 4.1B and Table 4.3: For Poisson-like dynamics
(𝑚 ≈ 0), the intrinsic timescale is zero ( ̂𝜏p𝑠𝑛 ≈ 0ms) and the activity between
neurons is uncorrelated. As the distance to criticality becomes smaller (𝑚 → 1),
the intrinsic timescale becomes larger ( ̂𝜏s𝑢𝑏 ≈ 19ms, ̂𝜏r𝑒𝑣 ≈ 98ms, ̂𝜏c𝑟𝑖𝑡 ≈ 1.6 s),
fluctuations become stronger, and the spiking activity becomes more and more
correlated in space and time.

Table 4.3: Parameters and intrinsic timescales of dynamic states. All combinations of
branching parameter 𝑚 and per-neuron drive ℎ result in a stationary activ-
ity of 1Hz per neuron. Due to the recurrent topology, it is more appropri-
ate to consider the measured autocorrelation time ̂𝜏 rather than the analytic
timescale 𝜏.

State name 𝑚 ̂𝜏 (measured) 𝜏 = −2ms
ln𝑚 ℎ

Poisson 0.0 0.1 ± 0.1ms 0.0ms 2 × 10−3

Subcritical 0.9 18.96 ± 0.09ms 18.9ms 2 × 10−4

Reverberating 0.98 98.3 ± 1.0ms 98.9ms 4 × 10−5

Critical 0.999 1.58 ± 0.12 s 1.99 s 2 × 10−6
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Figure 4.1: Sampling affects the assessment of dynamic states from neuronal
avalanches. A: Representation of the sampling process of neurons (black cir-
cles) using electrodes (orange squares). Under coarse-sampling (e.g. LFP),
activity is measured as a weighted average in the electrode’s vicinity. Under
sub-sampling (spikes), activity is measured from few individual neurons. B:
Fully sampled population activity of the neuronal network, for states with
varying intrinsic timescales 𝜏: Poisson ( ̂𝜏p𝑠𝑛 ≈ 0ms), subcritical ( ̂𝜏s𝑢𝑏 ≈
19ms), reverberating ( ̂𝜏r𝑒𝑣 ≈ 98ms) and critical ( ̂𝜏c𝑟𝑖𝑡 ≈ 1.6 s).C:Avalanche-
size distribution 𝑝(𝑆) for coarse-sampled (left) and sub-sampled (right) ac-
tivity. Sub-sampling allows for separating the different states, while coarse-
sampling leads to 𝑝(𝑆) ∼ 𝑆−𝛼 for all states except Poisson. Parameters: Inter-
electrode distance 𝑑E = 400µm and time-bin size Δ𝑡 = 8ms.
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Figure 4.2: Analysis pipeline for avalanches from sampled data. I: Under coarse-
sampling (LFP-like), the recording is demeaned and thresholded. II: The
timestamps of events are extracted. Under sub-sampling (spikes), times-
tamps are obtained directly. III: Events from all channels are binned with
time-bin size Δ𝑡 and summed. The size 𝑆 of each neuronal avalanche is cal-
culated. IV:The probability of an avalanche size is given by the (normalized)
count of its occurrences throughout the recording.

4.3.2 Avalanches are extracted differently under coarse-sampling and sub-sampling

At each electrode, we sample both the spiking activity of the closest neuron
(sub-sampling) and a spatially averaged signal that emulates LFP-like coarse-
sampling.

Both sub-sampling and coarse-sampling are sketched in Fig. 4.1A: For coarse-
sampling (left), the signal from each electrode channel is composed of varying
contributions (orange circles) of all surrounding neurons. The contribution of
a particular spike from neuron 𝑖 to electrode 𝑘 decays as 1/𝑑𝑖𝑘 with the neuron-
to-electrode distance 𝑑𝑖𝑘 (see Supplemental Information for an extended discus-
sion on the impact of the distance dependence). In contrast, if spike detection is
applied (Fig. 4.1A, right), each electrode signal captures the spiking activity of
few individual neurons (highlighted circles).

To test both recording types for criticality, we apply the standard analysis
that provides a probability distribution 𝑝(𝑆) of the avalanche size 𝑆: In theory,
an avalanche describes a cascade of activity where individual units—here neu-
rons—are consecutively and causally activated. Each activation is called an event.
The avalanche size is then the total number of events in the time between the first
and the last activation. A power law in the size distribution of these avalanches is
a hallmark of criticality [4]. In practice, the actual size of an avalanche is hard to
determine because individual avalanches are not clearly separated in time; the
coarse-sampled signal is continuous-valued and describes the local population.
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In order to extract binary events for the avalanche analysis (Fig. 4.2), the sig-
nal has to be thresholded—which is not necessary for spike recordings, where
binary events are inherently present as timestamps.

4.3.3 Coarse-sampling makes dynamic states indistinguishable

Irrespective of the applied sampling, the inferred avalanche distribution should
represent the true dynamic state of the system.

However, under coarse-sampling (Fig. 4.1C, left), the avalanche-size distribu-
tions of the subcritical, reverberating and critical state are virtually indistinguish-
able. Intriguingly, all three show a power law. The observed exponent 𝛼 = 1.5
is associated with a critical branching process. Only the uncorrelated (Poisson-
like) dynamics produce a non-power-law decay of the avalanche-size distribu-
tion.

Under sub-sampling (Fig. 4.1C, right), each dynamic state produces a unique
avalanche-size distribution.Only the critical state,with the longest intrinsic timescale,
produces the characteristic power law. Even the close-to-critical, reverberating
regime is clearly distinguishable and features a “subcritical decay” of 𝑝(𝑆).

4.3.4 Measurement overlap causes spurious correlations

Why are the avalanche-size distributions of different dynamic states hard to dis-
tinguish under coarse-sampling? The answer is hidden within the cascade of
steps involved in the recording and analysis procedure. Here, we separate the
impact of the involved processing steps. Most importantly, we discuss the con-
sequences of measurement overlap—which we identify as a key explanation for
the ambiguity of the distributions under coarse-sampling.

In order to obtain discrete events from the continuous time series for the
avalanche analysis, each electrode signal is filtered and thresholded, binned
with a chosen time-bin size Δ𝑡 and, subsequently, the events from all channels
are stacked. This procedure is problematic because (i) electrode proximity adds
spatial correlations, (ii) temporal binning adds temporal correlations, and (iii)
thresholding adds various types of bias [113–115].

As a result of the involved analysis of coarse-sampled data, spurious correla-
tions are introduced that are not present in sub-sampled data. We showcase this
effect in Fig. 4.3, where the Pearson correlation coefficient between two virtual
electrodes is compared for both the (thresholded and binned) coarse-sampled
and sub-sampled activity. For the same parameters and dynamic state, coarse-
sampling leads to larger correlations than sub-sampling.

Depending on the distance between electrodes,multiple electrodesmight record
activity from the same neuron. This measurement overlap (or volume conduc-
tion effect) increases the spatial correlations between electrodes—and because
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Figure 4.3: Coarse-sampling leads to greater correlations than sub-sampling. Pearson
correlation coefficient between the signals of two adjacent electrodes for the
different dynamic states. Even for independent (uncorrelated) Poisson activ-
ity, measured correlations under coarse-sampling are non-zero. Parameters:
Inter-electrode distance 𝑑E = 400µm and time-bin size Δ𝑡 = 8ms.

from the signals from multiple electrode channels are combined in the analysis,
correlations can originate from measurement overlap alone.

4.3.5 Inter-electrode distance shapes criticality

Due to themeasurement overlap, avalanche-size distributions under coarse-sampling
depend on the inter-electrode distance 𝑑E (Fig. 4.4A). For small inter-electrode
distances, the overlap is strong. Thus, the spatial correlations are strong. Strong
correlations manifest themselves in larger avalanches. However, under coarse-
sampling the maximal observed size 𝑆 of an avalanche is limited by the number
of electrodes 𝑁E [155]. This limit due to 𝑁E manifests as a sharp cut-off and— in
combinationwith spuriousmeasurement correlations due to 𝑑E —can shape the
probability distribution. In the following,we show that these factors can bemore
dominant than the actual underlying dynamics.

In theory, supercritical dynamics are characterized by a sharp peak in the avalanche
distribution at 𝑆 = 𝑁E. Independent of the underlying dynamics, such a peak
can originate from small electrodedistances (Fig. 4.4A, 𝑑E = 100µm):Avalanches
are likely to span the small area covered by the electrode array. Furthermore,
due to strongmeasurement overlap, individual events of the avalanchemay con-
tribute strongly to multiple electrodes.

Subcritical dynamics are characterized by a pronounced decay already for 𝑆 <
𝑁E. Independent of the underlying dynamics, such a decay can originate from
large electrodedistances (Fig. 4.4A, 𝑑E = 500µm): Locally propagating avalanches
are unlikely to span the large area covered by the electrode array. Furthermore,
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distance 𝑑E. A: For small distances (𝑑E = 100µm), the avalanche-size distri-
bution 𝑝(𝑆) indicates (apparent) supercritical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 with
a sharp peak near the electrode number 𝑁E = 64. For large distances (𝑑E =
500µm), 𝑝(𝑆) indicates subcritical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 with a pronounced
decay already for 𝑆 < 𝑁E. There exists a sweet-spot value (𝑑E = 250µm) for
which 𝑝(𝑆) indicates critical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 until the the cut-off is
reached at 𝑆 = 𝑁E. The particular sweet-spot value of 𝑑E depends on time-
bin size (here, Δ𝑡 = 4ms). As a guide to the eye, dashed lines indicate 𝑆−1.5.
B: The branching parameter 𝑚a𝑣 is also biased by 𝑑E when estimated from
neuronal avalanches. Apparent criticality (𝑚a𝑣 ≈ 1, dotted line) is obtained
with 𝑑E = 250µmandΔ𝑡 = 4msbut alsowith 𝑑E = 400µmandΔ𝑡 = 8ms.B,
Inset: representation of themeasurement overlap between neighboring elec-
trodes; when electrodes are placed close to each other, spurious correlations
are introduced.

due to theweakermeasurement overlap, individual events of the avalanchemay
contribute strongly to one electrode (or to multiple electrodes but only weakly).
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Figure 4.5: In vivo and in vitro avalanche-size distributions 𝑝(𝑆) from LFP depend
on time-bin size Δ𝑡. Experimental LFP results are reproduced by many dy-
namics states of coarse-sampled simulations. A: Experimental in vivo re-
sults (LFP, human) from an array of 60 electrodes, adapted from [137].
B: Experimental in vitro results (LFP, culture) from an array with 60 elec-
trodes, adapted from [1]. C–F: Simulation results from an array of 64 vir-
tual electrodes and varying dynamic states, with time-bin sizes between
2ms ≤ Δ𝑡 ≤ 16ms and 𝑑E = 400µm. Subcritical, reverberating and critical
dynamics produce power-law distributions with bin-size-dependent expo-
nents 𝛼. Insets: Distributions are fitted to 𝑝(𝑆) ∼ 𝑆−𝛼. The magnitude of 𝛼
decreases as Δ𝑡−𝛽 with −𝛽 indicated next to the insets.

Consequently, there exists a sweet-spot value of the inter-electrode distance 𝑑E
for which 𝑝(𝑆) appears convincingly critical (Fig. 4.4A, 𝑑E = 250µm): a power
law 𝑝(𝑆) ∼ 𝑆−𝛼 spans all sizes up to the cut-off at 𝑆 = 𝑁E. However, the depen-
dence on the underlying dynamic state is minimal.

Independently of the apparent dynamics, we observe the discussed cut-off
at 𝑆 = 𝑁E, which is also often seen in experiments (Fig. 4.5). Note, however,
that this cut-off only occurs under coarse-sampling (see again Fig. 4.1C). When
spikes are used instead (Fig. 4.6), the same avalanche can reach an electrode
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Figure 4.6: In vivo avalanche-size distributions 𝑝(𝑆) from spikes depend on time-bin
size Δ𝑡. In vivo results from spikes are reproduced by sub-sampled sim-
ulations of subcritical to reverberating dynamics. Neither spike experi-
ments nor sub-sampled simulations show the cut-off that is characteristic
under coarse-sampling.A: Experimental in vivo results (spikes, awake mon-
key) from an array of 16 electrodes, adapted from [179]. The pronounced
decay and the dependence on bin size indicate subcritical dynamics. B: Ex-
perimental in vitro results (spikes, culture DIV 34) from an array with 59
electrodes, adapted from [22]. Avalanche-size distributions are independent
of time-bin size and produce a power law over four orders of magnitude. In
combination, this indicates critical dynamics with a separation of timescales.
C–F: Simulation for sub-sampling, analogous to Fig. 4.5. Subcritical dynam-
ics do not produce power-law distributions and are clearly distinguishable
from critical dynamics. F: Only the (close-to) critical simulation produces
power-law distributions. Note the dependence on time-bin size: In contrast
to the in vitro culture, the simulation does not feature a separation of time
scales (due to external drive and stationary activity) which causes a bin-size
dependence.

repeatedly in quick succession—whereas such double-events are circumvented
when thresholding at the population level. For more details see Fig. 4.9.
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A further signature of criticality is obtained by estimating the branching pa-
rameter. This is traditionally done at the avalanche level: The estimated branch-
ing parameter of the neuronal avalanches, 𝑚a𝑣, is defined as the average ratio of
events between subsequent time bins in an avalanche, i.e. during non-zero activ-
ity [1, 133]. Note that, due to coalescence and drive effects, 𝑚a𝑣 can differ from
𝑚 proper [111, 179].

Obtaining 𝑚a𝑣 for different electrode distances results in a picture consistent
with the one from avalanche-size distributions (Fig. 4.4B). In general, the depen-
dence on the electrode distance is stronger than the dependence on the underly-
ing state. At the particular value of the inter-electrode distance where 𝑚a𝑣 = 1,
the distributions appear critical. If 𝑚a𝑣 < 1 (𝑚a𝑣 > 1), the distributions ap-
pear subcritical (supercritical). Because the probability distributions and the es-
timated branching parameter share this dependence, a wide range of dynamic
states would be consistently misclassified—solely as a function of the inter-
electrode distance.

4.3.6 Temporal binning determines scaling exponents

Apart from the inter-electrode distance, the choice of temporal discretization
that underlies the analysis may alter avalanche-size distributions. This time-bin
size Δ𝑡 varies from study to study and it can severely impact the observed dis-
tributions [1, 22, 137, 179]. With smaller bin sizes, avalanches tend to be sep-
arated into small clusters, whereas larger bin sizes tend to “glue” subsequent
avalanches together [179]. Interestingly, this not only leads to larger avalanches,
but specifically to 𝑝(𝑆) ∼ 𝑆−𝛼, where the exponent 𝛼 increases systematically
with bin size [1, 137]. Such a changing exponent is not expected for conven-
tional systems that self-organize to criticality: Avalanches would be separated in
time, and 𝛼 should be fairly bin-size invariant for a large range of Δ𝑡 [22, 81, 179].

Our coarse-sampled model reproduces these characteristic experimental re-
sults (Fig. 4.5). It also reproduces the previously reported scaling [1] of the ex-
ponent with bin size 𝛼 ∼ Δ𝑡−𝛽 (Fig. 4.5, insets). Except for the Poisson dynam-
ics, all the model distributions show power laws. Moreover the distributions are
strikingly similar, not just to the experimental results, but also to each other. This
emphasizes how sensitive signs of criticality are to analysis parameters: All the
shown dynamic states are consistent with the ubiquitous avalanche-size distri-
butions that are observed in coarse-sampled experiments.

When spikes are used instead, power-law distributions only arise from crit-
ical dynamics. For comparison with the coarse-sampled results in Fig. 4.5, we
show avalanche-size distributions from experimental spike recordings and sub-
sampled simulations in Fig. 4.6. In this case, power laws are produced only by in
vitro cultures and the simulations that are (close-to) critical. In vivo spike record-
ings on awake subjects and simulations of subcritical dynamics produce distri-
butions that feature a pronounced decay instead of power laws. In contrast to
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coarse-sampling, the avalanche distributions that stem from sub-sampled mea-
sures (spikes) allow us to clearly tell apart the underlying dynamic states from
one another.

Overall, as our results on coarse-sampling have shown, different sources of
bias—here the measurement overlap and the bin size—can perfectly outweigh
each other. For instance, smaller electrode distances (that increase correlations)
can be compensated bymaking the time-bin size smaller (which again decreases
correlations). This was particularly evident in Fig. 4.4B, where increasing 𝑑E
could be outweighed by increasing Δ𝑡 in order to obtain a particular value for the
branching parameter 𝑚a𝑣. The same relationshipwas again visible in Fig. 4.5C-F:
For the shown 𝑑E = 400µm (see also Fig. 4.12 for 𝑑E = 200µm), only Δ𝑡 = 8ms
results in 𝛼 = 1.5—the correct exponent for the underlying dynamics. Since the
electrode distance cannot be varied in most experiments, selecting anything but
the one “lucky” Δ𝑡 will cause a bias.

4.3.7 Scaling laws fail under coarse-sampling

The most used indication of criticality in neuronal dynamics is the avalanche-
size distribution 𝑝(𝑆). However, at criticality, the avalanche duration distribution
𝑝(𝐷) and the average avalanche size for a given duration, ⟨𝑆⟩(𝐷), should also fol-
low power-laws, each with a respective critical exponent [51]:

𝑝(𝑆) ∼ 𝑆−𝛼 (4.2)

𝑝(𝐷) ∼ 𝐷−𝛽 (4.3)

⟨𝑆⟩(𝐷) ∼ 𝐷𝛾 (4.4)

The exponents are related to one another by the scaling relationship

𝛽 − 1
𝛼 − 1 = 𝛾 . (4.5)

For a pure branching process—or any process in the mean-field directed per-
colation universality class [13, 232]— they take the values 𝛼 = 3/2, 𝛽 = 2 and
𝛾 = 2.

Lastly, at criticality, avalanches of vastly different duration still have the same
average shape: The activity 𝑠(𝑡, 𝐷) at any given time 𝑡 (within the avalanche’s life-
time 𝐷) is described by a universal scaling function F , so that

𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1F (𝑡/𝐷) . (4.6)

In other words, changing 𝑠(𝑡, 𝐷) → 𝑠(𝑡, 𝐷)/𝐷𝛾−1 and 𝑡 → 𝑡/𝐷 should result in a
data collapse for the average avalanche shapes of all durations.
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Figure 4.7: Scaling laws of a system with critical dynamics under coarse- and sub-
sampling. A–C:Avalanche-size distribution 𝑝(𝑆) ∼ 𝑆−𝛼, avalanche-duration
distribution 𝑝(𝐷) ∼ 𝐷−𝛽, and average size for a given duration ⟨𝑆⟩(𝐷) ∼ 𝐷𝛾,
respectively, for sub-sampled (“sub”) and coarse-sampled (“coarse”) sim-
ulations. Distributions under sub-sampling easily span more than one or-
der of magnitude, while coarse-sampled distributions suffer from an early
cut-off (which hinders power-law fits). D, E: Shape collapse of 𝑠(𝑡, 𝐷) ∼
𝐷𝛾−1F (𝑡/𝐷) for sub-sampled and coarse-sampled data, respectively. Un-
der coarse-sampling, the early duration cut-off results in few unique shapes
for the collapse (corresponding to unique 𝐷-values). F: Comparison of the
critical exponents obtained independently from Eqs. (4.4)–(4.6). Exponents
are consistent only under sub-sampling. Parameters: 𝑑E = 400µm and
Δ𝑡 = 8ms.

From Eqs. (4.4)–(4.6), we have three independent ways to determine the ex-
ponent 𝛾. Consistency between the three is a further test of criticality. However,
to the best of our knowledge, experimental evidence with the full set of scal-
ing laws was only observed under sub-sampling: from spikes of in vitro record-
ings [134, 150].

The absence of scaling laws in coarse-sampled data can be explained by how
coarse-sampling biases the average shape: the cut-off in 𝑝(𝑆) near the number of
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electrodes 𝑆 = 𝑁E implies that ⟨𝑆⟩(𝐷) < 𝑁E. From Eq. (4.4) we have 𝐷 < 𝑁1/𝛾
E .

If 𝛾 > 1 the cut-off in 𝑝(𝑆) causes a much earlier cut-off in both 𝑝(𝐷) and ⟨𝑆⟩(𝐷).
Given that experiments typically have 𝑁E ∼ 102 electrodes, 𝑝(𝐷) of a pure

branching process (with 𝛾 = 2) would span a power-law for less than one order
ofmagnitude. However, the typical standard to reliably fit a power-law is at least
two orders of magnitude [27]. While this is problematic under coarse-sampling
(Fig. 4.5),we have shown that the hard cut-off is not present under sub-sampling
(Fig. 4.6).

Again comparing the two ways of sampling, we now apply the independent
measurements of 𝛾 to our model with critical dynamics (Fig. 4.7). We find con-
sistent exponents under sub-sampling.

In this case, although they differ from those expected for a pure branching
process (𝛾 = 2), the exponents we find are compatible with the experimental
values of 𝛾e𝑥𝑝 = 1.3 ± 0.05 reported in [134] and 1.3 ≤ 𝛾e𝑥𝑝 ≤ 1.5 reported
in [150].

Under coarse-sampling, however, the exponent obtained from the shape col-
lapse (𝛾 ≈ 0.74) greatly differs from the other two (𝛾 ≈ 1.74, 𝛾 ≈ 1.62), Fig. 4.7F.
Moreover, the extremely short range available to fit 𝑝(𝐷) and ⟨𝑆⟩(𝐷) with power-
laws (1 ≤ 𝐷 ≤ 6) makes the estimated exponents unreliable.

To conclude, the full set of critical exponents revealed criticality only under
sub-sampling. Only in this case we observed both, a match between all the mea-
surements of the exponent 𝛾, and a power-law behavior extending over a range
large enough to reliably fit them.

4.4 ALT ERNAT I V E MODEL S

4.4.1 Sampling bias remains under alternative topologies

The network topology used in the main paper is local: on average, each neuron
is connected to its nearest 𝐾 = 103 neighbors. It is of interest to check if alter-
native topologies can impact the distinguishability of the underlying dynamic
state under coarse-sampling.

For that, we select two additional topologies. The first (”Orlandi”)mimics the
growth process of a neuronal culture. In short, axons grow outward on a semi-
flexible path of limited length and have a given probability to form a synapse
when they intersect the (circular) dendritic tree of another neuron. Thereby, this
topology is local without requiring distance-dependent synaptic weights (refer
to [233] for more details). The second (”Random”) implements a purely ran-
dom connectivity, with each neuron being connected to 𝐾 = 103 neurons. Note
that this is an unrealistic setup as this topology is completely non-local.

We find that, under coarse-sampling, reverberating and critical dynamics re-
main indistinguishable with the alternative topologies (Fig. 4.8, left). Mean-



84 E F F EC T S O F SAMPL ING IN MEASURE S O F NEURONAL AVALANCHE S

Local

coarse-sampled sub-sampled

Orlandi

Random

Orlandi

Random

av
al

an
ch

e-
si

ze
 p

ro
ba

bi
lit

y 
p(

s)

Avalanche size S

Figure 4.8: Effect of alternative network topologies. Avalanche-size probability 𝑝(𝑆)
from coarse-sampled activity (left) and sub-sampled activity (right) for sub-
critical, reverberating and critical dynamics. Top: results for the topology
used in the main paper (”Local”). Middle: results for a topology that mim-
ics culture growth [233] (”Orlandi”). Bottom: results for a random topol-
ogy. Under coarse-sampling, reverberating and critical dynamics are indis-
tinguishable with all topologies. Parameters: 𝑑E = 400 µm and Δ𝑡 = 8 ms.

while, under sub-sampling, all dynamic states are clearly distinguishable for all
topologies (Fig. 4.8, right).

4.4.2 Influence of the electrode field-of-view

In themain paper we considered that the contribution of a spiking neuron to the
electrode signal decays with distance 𝑑 as ∼ 1/𝑑. The precise way neuronal activ-
ity is recorded by extracellular electrodes depends on factors such as neuronal
morphology and the level of correlation between synapses [203, 204]. Neverthe-
less, we can study the impact of a varying electrode field-of-view by changing
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Figure 4.9: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neuron
at distance 𝑑. A: Avalanche-size probability 𝑝(𝑆) with 𝛾 = 1.0 for Δ𝑡 = 2ms
and 𝑑E = 100µm. B: Avalanche-size probability 𝑝(𝑆) with 𝛾 = 1.0 for Δ𝑡 =
8ms and 𝑑E = 400µm. C: Same as A for 𝛾 = 1.5. D: Same as B for 𝛾 = 1.5.
E: Same as A for 𝛾 = 2.0. F: Same as B for 𝛾 = 2.0. Increasing 𝛾 results in a
smaller electrode field-of-view, and removes the cut-off for 𝑆 ∼ 𝑁E.

the electrode contribution of a spike to ∼ 1/𝑑𝛾 with 1 ≤ 𝛾 ≤ 2. Note that 𝛾 = 1
corresponds to an electric monopole, while 𝛾 = 2 corresponds to an electric
dipole—which has a considerably smaller spatial reach.

As 𝛾 increases, the relative contribution of the closest neurons to the electrode
increases, and coarse-sampling becomes more similar to sub-sampling. The cut-
off at 𝑆 ∼ 𝑁E vanishes for large 𝛾, and the different dynamic states become
distinguishable (Fig. 4.9D-F). For completeness, in Fig. 4.10 and Fig. 4.11 we
show the effect of the varying electrode field-of-view for the alternative network
topologies discussed previously (”Orlandi” and ”Random”), with 𝑑E = 400µm
and 𝑑E = 200µm respectively. In all cases, 𝛾 ≥ 1.5 results in a vanishing of
the cut-off in 𝑝(𝑆). Note, however, that this requires a sufficiently large 𝑑E: for
𝑑E = 100µm and Δ𝑡 = 2ms, an electrode field-of-view of 𝛾 = 1.5 displays the
cut-off, and the dynamic states are not distinguishable (Fig. 4.9C).
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Figure 4.10: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neu-
ron at distance 𝑑, for different network topologies and 𝑑E = 200µm.
Dynamic states are Subcritical (left), Reverberating (center) and Critical
(right). Topologies are Local (top), Orlandi (middle) and Random (bot-
tom). Local corresponds to the topology used in the main paper, Orlandi
corresponds to themodel described in [233], and Random corresponds to a
completely random topology. Increasing 𝛾 (decreasing electrode FOV) re-
sults in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-sampling becomes
more spike-like. Bin-size for all distributions is Δ𝑡 = 4ms.

Thus, in order to determine criticality under coarse-sampling, the experimen-
tal set-up must combine i) a large 𝑑E, ii) a narrow electrode field-of-view (large
𝛾) and iii) systems with different dynamic states. This can potentially then be
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used to qualitatively compare the distance to criticality between the systems.
Not only is this much more limited than what is possible with sub-sampled
data [22, 177, 178], but the lack of the cut-off is not observed in experimental data
of coarse-sampled recordings—which indicate that electrodes typically have a
large field-of-view, and that our assumption of 𝛾 = 1 is adequate.

4.5 CONCLUS ION

When inferring collective network dynamics from partially sampled systems,
it is crucial to understand how the sampling biases the measured observables.
Without this understanding, an elaborate analysis procedure—such as the one
needed to study neuronal avalanches from coarse-sampled data—can result in
a misclassification of the underlying dynamics.

We have shown that the analysis of neuronal avalanches based on (LFP-like)
coarse-sampleddata canproduce indistinguishable results for systemswith vastly
different spatio-temporal signatures. These signatures derive from underlying
dynamic states that, in this work, range from subcritical to critical—a range
over which the intrinsic timescale undergoes a hundred-fold increase. And yet,
the resulting avalanche-size distributions can be uninformative and ambiguous
(Fig. 4.1).

The ambiguity of neuronal avalanches partially originates from spurious cor-
relations. We have demonstrated the generation of spurious correlations from
two sampling and processing mechanisms: measurement overlap (due to vol-
ume conduction) and temporal binning. Other studies found further mecha-
nisms that can generate apparent power-law distributions by (purposely or ac-
cidentally) introducing correlations into the observed system. For instance, cor-
related input introduces temporal correlations already into the underlying sys-
tem [7, 234].Alongwith thresholding and low-pass frequencyfiltering—which
add temporal correlations to the observed system [8, 9]— this creates a large
space of variables that either depend on the system, sampling and processing,
or a combination of both.

As our results focus on sampling and processing, we believe that the observed
impact on avalanche-size distributions is general and model independent. We
deliberately chose a simple model and confirmed that our results are robust to
parameter changes: employing a more realistic topology causes no qualitative
difference (Fig. 4.8).

With our results on sampling effects, we can revisit the previous literature
on neuronal avalanches. In the model, we found that coarse-sampling clouds
the differences between subcritical, reverberating, and critical dynamics: The
avalanche distributions always resemble power laws (Fig. 4.1). Because of this
ambiguity, the power-law distributions obtained ubiquitously from LFP, EEG,
MEG and BOLD activity should be taken as evidence of neuronal activity with
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Figure 4.11: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neu-
ron at distance 𝑑, for different network topologies and 𝑑E = 400µm.
Dynamic states are Subcritical (left), Reverberating (center) and Critical
(right). Topologies are Local (top), Orlandi (middle) and Random (bot-
tom). Local corresponds to the topology used in the main paper, Orlandi
corresponds to themodel described in [233], and Random corresponds to a
completely random topology. Increasing 𝛾 (decreasing electrode FOV) re-
sults in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-sampling becomes
more spike-like. Bin-size for all distributions is Δ𝑡 = 8ms.

spatio-temporal correlations—but not necessarily of criticality proper; the coarse-
sampling hinders such a precise classification.
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In contrast, a more precise classification is possible under sub-sampling. If
power-law distributions are observed from (sub-sampled) spiking activity, they
do point to critical dynamics. For spiking activity, we even have mathematical
tools to infer the precise underlying state in a sub-sampling-invariant manner
that does not rely on avalanche distributions [177, 178]. Having said so, not all
spike recordings point to critical dynamics: While in vitro recordings typically
do produce power-law distributions [22, 101, 134, 174], recordings from awake
animals do not [156, 179, 226, 235]. Together, these results suggest that in vitro
systems self-organize towards criticality, whereas the cortex of awake animals
(and humans) operates near criticality—in a slightly subcritical, reverberating
regime.

The reverberating regime harnesses benefits associated with criticality, and it
unifies both types of in vivo results: For experiments on awake animals, spike-
based studies indicate subcritical dynamics. While coarse measures produce
power laws that indicate criticality, with this study we showed that they can-
not distinguish critical from subcritical dynamics. Consistent with both, a brain
that operates in a regime—as opposed to a fixed dynamic state—can flexibly
tune response properties. In particular, the reverberating regime covers a spe-
cific range of dynamics in the vicinity of the critical point, where small changes
in effective synaptic strength causemajor changes in response properties. Hence,
the reverberating regime is an ideal baseline [178] from which brain areas or
neural circuits can adapt to meet task demands [122, 137, 144, 146, 236–239].

In conclusion, our results methodically separate sampling effects from the
underlying dynamic state. They overcome the discrepancy between the coarse-
sampled and sub-sampled results of neuronal avalanches from awake animals.
By offering a solution to a long-standing (critical) point of conflict, we hope to
move beyond just describing a system as critical or not, and explore the richness
of dynamic states around criticality.



5
D I SCUS S ION AND OUTLOOK

”But nature is always more subtle, more intricate, more elegant than what
we are able to imagine.” - Carl Sagan

In this Thesis we examined the topic of criticality in the brain from both the
theoretical (Physics) and experimental (Neuroscience) sides. Our focus was on
rigor: to which extent can it be claimed that brain dynamics is approximated by
a phase transition? How can sampling bias affect this claim?

5.1 CR I T I CAL CONS ID ERAT IONS

We first explored the theory of phase transitions, and the models that are used
to represent neuronal activity in the context of criticality. We saw that critical-
ity optimizes many properties in different models, such as correlations. This
makes the concept enticing, as it means many algorithms (i.e. models) could
implement computation with similar properties1. Thus, criticality in the brain
goes beyond the specific (mostly branching) models used to study neuronal
avalanches.

However, we also saw that the theory of phase transitions is far from finished,
and that details do matter. In particular, we saw that i) seemingly small changes
(such as adding a drive or external field) can drastically change the dynamics,
and ii) topological details can change all aspects of the phase transition, from
its existence (e.g. 1D vs 2D Ising model) to its critical point (e.g. value of the
percolation threshold). In all but the simplest models analytical solutions are
not known, and simulations must be handled with care2.

Whether careful consideration is needed depends on the desired level of anal-
ysis. If only the most coarse properties are of interest (i.e. if there are power-
laws), then simple arguments of universality may suffice. Other situations may
demand knowledge of an explicit model— for instance, if we aim tomanipulate
the dynamics of the system.

In particular, if activity is sampled at a coarse level, and we assume it reflects
(coarse grains) the underlying activity, then we must understand the model in
intricate detail. This assumption is equivalent to assuming that the sampling
effectively renormalizes the dynamics: as we have seen, not only is renormaliza-

1 This ties to David Marr’s levels of description [240], which argues that computation is divided
in i) a computational task, ii) the algorithm used to solve the task and iii) the hardware (e.g.
neuronal circuit) used to implement the algorithm.

2 See e.g. coalescence in branching networks (Sec. 2.4.3).
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tion only possible at criticality, but it requires very specific steps in order to be
done correctly.

In the second part of this thesis we focused on experimental evidence of crit-
icality in neuronal avalanches, and on the role of sampling effects. From that a
clear picture emerges: evidence for criticality is still generally ambiguous,mostly
due to experimental limitations. As phase transitions are collective phenomena,
the observables used to ascertain criticality are affected by sampling bias. Strong
evidence for criticality in systems displaying neuronal avalanches comesmainly
in the form of a small number of papers [134, 148, 150] that measure the full set
of scaling laws.

The more observables that are measured, the smaller the number of models
that can generate all the required properties. This is particularly important in
the case of neuronal avalanches, as many processes can generate the apparent
power-laws used to identify critical phenomena. Yet we are unaware of any non-
criticalmodel capable of reproducing the full set of observables and scaling laws
observed in the papers mentioned above, and they thus constitute important
evidence that criticality may emerge in neuronal systems.

Our analyses on the effects of sampling in critical phenomenamade clear that
sampling can deeply impact assessment of neuronal activity, and must always3
be explicitly taken into account. We’ve shown that sampling can both generate a
wide range of spectral properties (Sec. 3.3) and generate power-laws for a wide
range of subcritical states (Chapter 4). From this last result,wewere able to unify
the literature of neuronal avalanches with results from continuous (branching
parameter) observables: they are all compatible with a baseline sightly subcriti-
cal, reverberating dynamics in vivo.

5.2 THE US E FULNE S S O F S IMPL E MODEL S

A common criticism of models such as the branching process is that they are
too simple to be useful to understand the brain. Indeed, the branching process
in particular does not include a number of mechanisms though to be key in real
neurons. Namely, it has no inhibition, no membrane dynamics (which accounts
for signal integration) and cannot generate oscillations. Yet, it reproduces a num-
ber of experimental features. Is that a good model?

Here, we apply the philosophy of “all models are wrong, some are useful”. In
particular, we measure the strength of a model based on how much we get out
of it compared to how much was put into it. In other words, sophisticated mod-
els with large amounts of parameters should offer considerably more precise
predictions than simple toy models, in order to be considered “better”. More so-
phisticated models are not only more difficult to understand, but they are more

3 In the case of collective properties.
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prone to overfitting. As the saying goes: with four parameters you can fit an
elephant, and with five you can make it wiggle its trunk4.

In that, the branching process is a successful simple model: it is a analytically-
treatable 1-parameter model that can describe and reproduce some involved
properties of neuronal activity (correlation length and avalanche dynamics).
The fact that it can reproduce those properties while lacking basic mechanisms
suggests that perhaps these mechanisms are not very important for the proper-
ties studied, at the scale they were studied.

In the case of inhibition, this is perfectly consistent: inhibition is known to be
mostly local, while we’ve seen (Table 2.1) that most evidence for criticality is on
large scales. Thus, inhibition can be thought of as a field effect, homogeneously
dampening activity and making the system subcritical. If that homogeneity is
not present, such as when considering microscopic circuits, then models with
explicit inhibition are better-suited.

With that in mind, it is not surprising that activity spreading in neuronal net-
works can be approximated to some extent with simple models. A better ques-
tion is what kind of insight can be obtained from such models. We argue that
the criticality hypothesis — and its phase transition models — is promising in
that regard: it offers for instance the insight that many important observables
of neuronal activity (e.g. correlation measures) can be created by simple and
locally-controllable mechanisms, and thus open a window for the understand-
ing of e.g. pharmacological manipulation of neuronal networks.

An important last point is that simple models are well-understood, and thus
controllable. It is often said that model validation requires intervention: models
must predict the result of experimental manipulation of the system. Being well-
understood, models such as the branching parameter can offer clear predictions
on the result of interventions.

5.3 WHERE DO WE GO FROM HERE ?

Despite being a topic of research for more than 20 years, the extent to which
brain dynamics can be approximated as a critical phase transition remains un-
known. As we discussed above, solving this requires both analytical and experi-
mental efforts. In this last part we comment on current and future developments
that may help resolve this ambiguity.

On the analytical side, more realistic models are being developed that aim to
correct the shortcomings of our phase transition models. For instance, models
that explicitly add neuronal oscillations on top of a criticality framework [242,
243]. In particular, the CROS (CRitical OScillations) model does it by balancing
inhibition and excitation, while still presenting a phase transition [211, 242]. In
terms of sampling, efforts are underway to understand how to link neuronal

4 This is a quote attributed to mathematician and pioneer computer scientist John von Neu-
mann [241].
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activity at different scales, and effectively understand how to perform coarse-
graining of neuronal recordings [244–246].

The need for better analytical tools inNeuroscience is not confined to the study
of criticality. In a paper called ”Could a Neuroscientist Understand a Micropro-
cessor?”, Jonas & Kording [247] applied a number of often used analyses (such
as correlation and causality measures) to a fully-simulated CPU from the 1970’s.
Therewas no experimental limitation, as every detail was known, and the CPU’s
deterministic dynamics could be followed with millisecond precision. Yet they
showed that little insight was obtained from such analyses, and argued for the
need of better tools.

On the experimental side, state-of-the-art and upcoming techniques have the
potential to revolutionize the study of criticality in neuronal networks. In terms
of electrophysiological recordings, Neuropixel probes [248] increase the num-
ber of recording sites to ∼ 103 per shank, which can result in considerably less
subsampling of spiking activity.

Perhaps more importantly, optical imaging techniques hold the promise of
full sampling of neuronal activity [154, 249, 250]. This could completely bypass
the current issues with sampling, and offer a definitive view to which extend
brain activity is at a phase transition. This was already seen in Ponce-Alvarez et
al. [148], in which zebrafish larvae was imaged with near-neuronal resolution.
Due to the extremely large amount of recording sites (ROIs), avalanche analysis
of the data yielded power-lawswith orders-of-magnitudemore statistics (longer
distributions) than previous results.

One caveat is that those imaging techniques are based on calcium dynamics,
which have slow (∼ 1s) timescales. This results in a temporal resolution that is
2 orders of magnitude slower than spiking activity (∼ 4 ms). Thus, for now it
cannot be said results from imaging techniques present unequivocal evidence
for criticality at the lowest levels of neuronal processing. Nevertheless, optical
imaging remains the best bet for rigorous assessment of criticality in the brain.

Inevitably, as more detailed properties of neuronal activity are measured, and
its large heterogeneity better understood, the concept of a critical phase transi-
tion becomes less useful. However we believe that, before it happens, critical-
ity still has the potential to contribute plenty more to the understanding of the
brain.



B I B L IOGRAPHY

[1] John M Beggs and Dietmar Plenz. “Neuronal avalanches in neocortical
circuits.” In: J. Neurosci. 23.35 (Dec. 2003), pp. 11167–77. ISSN: 1529-2401.

[2] S Dunkelmann and G Radons. “Neural Networsk and Abelian Sandpile
Models of Self-Organized Criticality.” In: Proc. Int. Conf. Artif. Neural
Networks. Ed. by M. Marinaro and P. G. Morasso. Springer-Verlag, 1994,
pp. 867–870.

[3] John M Beggs. “The criticality hypothesis: how local cortical networks
might optimize information processing.” In: Philos. Trans. R. Soc. AMath.
Phys. Eng. Sci. 366.1864 (2008), pp. 329–343. ISSN: 1364-503X, 1471-2962.
DOI: 10.1098/rsta.2007.2092.

[4] Dietmar Plenz andErnstNiebur, eds.Criticality inNeural Systems. Vol. 9783527411.
Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, Apr. 2014,
pp. 1–566. ISBN: 9783527651009. DOI: 10.1002/9783527651009.

[5] Miguel A. Muñoz. “Colloquium : Criticality and dynamical scaling in
living systems.” In:Rev.Mod. Phys. 90.3 (July 2018), p. 031001. ISSN: 0034-
6861. DOI: 10.1103/RevModPhys.90.031001.

[6] Luca Cocchi et al. “Criticality in the brain: A synthesis of neurobiology,
models and cognition.” In: Prog. Neurobiol. 158 (2017), pp. 132–152. ISSN:
18735118. DOI: 10.1016/j.pneurobio.2017.07.002. arXiv: 1707.05952.

[7] Viola Priesemann and Oren Shriki. “Can a time varying external drive
give rise to apparent criticality in neural systems?” In: PLOS Comput.
Biol. 14.5 (May 2018). Ed. by Francesco P. Battaglia, e1006081. ISSN: 1553-
7358. DOI: 10.1371/journal.pcbi.1006081.

[8] C. Bédard et al. “Does the 1/f Frequency Scaling of Brain Signals Reflect
Self-Organized Critical States?” In: Phys. Rev. Lett. 97.11 (Sept. 2006),
p. 118102. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.97.118102.

[9] Jonathan Touboul andAlainDestexhe. “Can power-law scaling and neu-
ronal avalanches arise from stochastic dynamics?” In:PLoSOne 5.2 (2010).
ISSN: 19326203. DOI: 10.1371/journal.pone.0008982. arXiv: 0910.0805.

[10] Suzana Herculano-Houzel. “The human brain in numbers: a linearly
scaled-up primate brain.” In: Front. Hum. Neurosci. 3.NOV (2009), pp. 1–
11. ISSN: 16625161. DOI: 10.3389/neuro.09.031.2009.

[11] Hermann Cuntz et al. “One Rule to Grow Them All: A General Theory
of Neuronal Branching and Its Practical Application.” In: PLoS Comput.
Biol. 6.8 (Aug. 2010). Ed. by Abigail Morrison, e1000877. ISSN: 1553-7358.
DOI: 10.1371/journal.pcbi.1000877.

95

https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1002/9783527651009
https://doi.org/10.1103/RevModPhys.90.031001
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://arxiv.org/abs/1707.05952
https://doi.org/10.1371/journal.pcbi.1006081
https://doi.org/10.1103/PhysRevLett.97.118102
https://doi.org/10.1371/journal.pone.0008982
https://arxiv.org/abs/0910.0805
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1371/journal.pcbi.1000877


96 B I B L IOGRAPHY

[12] H E Stanley. “Scaling, universality, and renormalization: Three pillars of
modern critical phenomena.” In: Rev Mod Phys 71.2 (1999), S358–S366.
ISSN: 0034-6861. DOI: 10.1103/RevModPhys.71.S358.

[13] James P. Sethna. Statistical Mechanics: Entropy, Order Parameters, and Com-
plexity. 1st.NewYork:OxfordUniversity Press, June 2006. ISBN: 9780198566779.

[14] HayeHinrichsen. “Non-equilibrium critical phenomena and phase tran-
sitions into absorbing states.” In: Adv. Phys. 49.7 (2000), pp. 815–958.
ISSN: 14606976. DOI: 10.1080/00018730050198152. arXiv: 0001070 [cond-
mat].

[15] Jonas Dehning et al. “Inferring change points in the spread of COVID-
19 reveals the effectiveness of interventions.” In: Science (80-. ). 369.6500
(July 2020), eabb9789. ISSN: 0036-8075. DOI: 10.1126/science.abb9789.
arXiv: 2004.01105.

[16] Zhou Jiang et al. “MBene (MnB): a new type of 2Dmetallic ferromagnet
with high Curie temperature.” In:Nanoscale Horizons 3.3 (2018), pp. 335–
341. ISSN: 2055-6756. DOI: 10.1039/C7NH00197E.

[17] LEO P. KADANOFF et al. “Static Phenomena Near Critical Points: The-
ory and Experiment.” In: Rev. Mod. Phys. 39.2 (Apr. 1967), pp. 395–431.
ISSN: 0034-6861. DOI: 10.1103/RevModPhys.39.395.

[18] M E Fisher. “The theory of equilibrium critical phenomena.” In: Reports
Prog. Phys. 30.2 (July 1967), p. 306. ISSN: 00344885. DOI: 10.1088/0034-
4885/30/2/306.

[19] Tatjana Tchumatchenko et al. “Spike correlations - What can they tell
about synchrony?” In: Front. Neurosci. 5.MAY(2011), pp. 1–9. ISSN: 16624548.
DOI: 10.3389/fnins.2011.00068.

[20] GyörgyBuzsáki andKenjiMizuseki. “The log-dynamic brain: how skewed
distributions affect network operations.” In:Nat. Rev.Neurosci. 15.4 (2014),
pp. 264–78. ISSN: 1471-0048. DOI: 10.1038/nrn3687.

[21] Stefano Fusi et al. “Cascademodels of synaptically storedmemories.” In:
Neuron 45.4 (2005), pp. 599–611. ISSN: 08966273. DOI: 10.1016/j.neuron.
2005.02.001.

[22] A. Levina and V. Priesemann. “Subsampling scaling.” In: Nat. Commun.
8.1 (Aug. 2017), p. 15140. ISSN: 2041-1723. DOI: 10.1038/ncomms15140.

[23] AaronClauset et al. “Power-lawdistributions in empirical data.” In: (June
2007), p. 43. DOI: 10.1137/070710111. arXiv: 0706.1062.

[24] AnnaDeluca andÁlvaro Corral. “Fitting and goodness-of-fit test of non-
truncated and truncated power-law distributions.” In:Acta Geophys. 61.6
(2013), pp. 1351–1394. ISSN: 1895-6572. DOI: 10.2478/s11600-013-0154-
9. arXiv: arXiv:1212.5828v2.

https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1080/00018730050198152
https://arxiv.org/abs/0001070
https://arxiv.org/abs/0001070
https://doi.org/10.1126/science.abb9789
https://arxiv.org/abs/2004.01105
https://doi.org/10.1039/C7NH00197E
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.3389/fnins.2011.00068
https://doi.org/10.1038/nrn3687
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1038/ncomms15140
https://doi.org/10.1137/070710111
https://arxiv.org/abs/0706.1062
https://doi.org/10.2478/s11600-013-0154-9
https://doi.org/10.2478/s11600-013-0154-9
https://arxiv.org/abs/arXiv:1212.5828v2


B I B L IOGRAPHY 97

[25] RudolfHanel et al. “Fitting power-laws in empirical datawith estimators
that work for all exponents.” In: PLoS One 12.2 (2017), pp. 1–15. ISSN:
19326203. DOI: 10.1371/journal.pone.0170920. arXiv: 1609.05357.

[26] M. L. Goldstein et al. “Problems with fitting to the power-law distribu-
tion.” In: Eur. Phys. J. B 41.2 (2004), pp. 255–258. ISSN: 14346028. DOI:
10.1140/epjb/e2004-00316-5. arXiv: 0402322 [cond-mat].

[27] Michael P.H. H. Stumpf and Mason A. Porter. “Critical Truths About
Power Laws.” In: Science (80-. ). 335.6069 (2012), pp. 665–666. ISSN: 0036-
8075. DOI: 10.1126/science.1216142.

[28] Osame Kinouchi and Mauro Copelli. “Optimal dynamical range of ex-
citable networks at criticality.” In: Nat. Phys. 2.5 (May 2006), pp. 348–
351. ISSN: 1745-2473. DOI: 10.1038/nphys289.

[29] Johannes Zierenberg et al. “Tailored ensembles of neural networks opti-
mize sensitivity to stimulus statistics.” In: Phys. Rev. Res. 2.1 (Feb. 2020),
p. 013115. ISSN: 2643-1564. DOI: 10.1103/PhysRevResearch.2.013115.
arXiv: 1905.10401.

[30] Clayton Haldeman and JohnM Beggs. “Critical Branching Captures Ac-
tivity in LivingNeuralNetworks andMaximizes theNumber ofMetastable
States.” In: Phys. Rev. Lett. 94.5 (Feb. 2005), p. 058101. ISSN: 0031-9007.
DOI: 10.1103/PhysRevLett.94.058101.

[31] Peter Krawitz and Ilya Shmulevich. “Basin entropy in Boolean network
ensembles.” In: Phys. Rev. Lett. 98.15 (2007), pp. 1–4. ISSN: 00319007. DOI:
10.1103/PhysRevLett.98.158701.

[32] LucillaDeArcangelis andHans J.Herrmann. “Learning as a phenomenon
occurring in a critical state.” In: Proc. Natl. Acad. Sci. U. S. A. 107.9 (2010),
pp. 3977–3981. ISSN: 00278424. DOI: 10.1073/pnas.0912289107. arXiv:
1003.1200.

[33] Ariel Haimovici et al. “Brain Organization into Resting State Networks
Emerges at Criticality on a Model of the Human Connectome.” In: Phys.
Rev. Lett. 110.17 (Apr. 2013), p. 178101. ISSN: 0031-9007. DOI: 10.1103/
PhysRevLett.110.178101.

[34] G. Deco and V. K. Jirsa. “Ongoing Cortical Activity at Rest: Critical-
ity, Multistability, and Ghost Attractors.” In: J. Neurosci. 32.10 (2012),
pp. 3366–3375. ISSN: 0270-6474. DOI: 10 . 1523 / JNEUROSCI . 2523 - 11 .
2012.

[35] A.M. Turing. “I.—COMPUTINGMACHINERYAND INTELLIGENCE.”
In:Mind LIX.236 (Oct. 1950), pp. 433–460. ISSN: 1460-2113. DOI: 10.1093/
mind/LIX.236.433.

[36] Chris G. Langton. “Computation at the edge of chaos: Phase transitions
and emergent computation.” In: Phys. D Nonlinear Phenom. 42.1-3 (June
1990), pp. 12–37. ISSN: 01672789. DOI: 10.1016/0167-2789(90)90064-V.

https://doi.org/10.1371/journal.pone.0170920
https://arxiv.org/abs/1609.05357
https://doi.org/10.1140/epjb/e2004-00316-5
https://arxiv.org/abs/0402322
https://doi.org/10.1126/science.1216142
https://doi.org/10.1038/nphys289
https://doi.org/10.1103/PhysRevResearch.2.013115
https://arxiv.org/abs/1905.10401
https://doi.org/10.1103/PhysRevLett.94.058101
https://doi.org/10.1103/PhysRevLett.98.158701
https://doi.org/10.1073/pnas.0912289107
https://arxiv.org/abs/1003.1200
https://doi.org/10.1103/PhysRevLett.110.178101
https://doi.org/10.1103/PhysRevLett.110.178101
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1016/0167-2789(90)90064-V


98 B I B L IOGRAPHY

[37] Stephen Wolfram. “Universality and complexity in cellular automata.”
In: Phys. D Nonlinear Phenom. 10.1-2 (Jan. 1984), pp. 1–35. ISSN: 01672789.
DOI: 10.1016/0167-2789(84)90245-8.

[38] James P. Crutchfield and Karl Young. “Inferring statistical complexity.”
In: Phys. Rev. Lett. 63.2 (July 1989), pp. 105–108. ISSN: 00319007. DOI: 10.
1103/PhysRevLett.63.105.

[39] Nils Bertschinger and Thomas Natschläger. “Real-Time Computation
at the Edge of Chaos in Recurrent Neural Networks.” In:Neural Comput.
16.7 (July 2004), pp. 1413–1436. ISSN: 0899-7667. DOI: 10.1162/089976604323057443.

[40] T. Toyoizumi and L. F. Abbott. “Beyond the edge of chaos: Amplification
and temporal integration by recurrent networks in the chaotic regime.”
In: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 84.5 (2011), pp. 1–8.
ISSN: 15393755. DOI: 10.1103/PhysRevE.84.051908.

[41] Lars Büsing et al. “Connectivity, dynamics, and memory in reservoir
computing with binary and analog neurons.” In: Neural Comput. 22.5
(2010), pp. 1272–1311. ISSN: 08997667. DOI: 10.1162/neco.2009.01-09-
947.

[42] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
2005, pp. 1–748. ISBN: 9780471241959. DOI: 10.1002/047174882X. arXiv:
ISBN0-471-06259-6.

[43] MichaelWibral et al. “Bits fromBrains for Biologically Inspired Comput-
ing.” In: Front. Robot. AI 2.March (Mar. 2015), pp. 1–25. ISSN: 2296-9144.
DOI: 10.3389/frobt.2015.00005. arXiv: 1412.0291.

[44] Andre Ribeiro et al. “Mutual information in random Boolean models
of regulatory networks.” In: Phys. Rev. E 77.1 (Jan. 2008), p. 11901. ISSN:
1539-3755. DOI: 10.1103/PhysRevE.77.011901.

[45] Lionel Barnett et al. “Information flow in a kinetic ising model peaks
in the disordered phase.” In: Phys. Rev. Lett. 111.17 (2013), pp. 1–4. ISSN:
00319007. DOI: 10.1103/PhysRevLett.111.177203.

[46] Joschka Boedecker et al. “Information processing in echo state networks
at the edge of chaos.” In: Theory Biosci. 131.3 (Sept. 2012), pp. 205–213.
ISSN: 14317613. DOI: 10.1007/s12064-011-0146-8.

[47] Joseph T. Lizier et al. “The information dynamics of phase transitions in
random boolean networks.” In: Artif. Life XI Proc. 11th Int. Conf. Simul.
Synth. Living Syst. ALIFE 2008 (2008), pp. 374–381.

[48] MelanieMitchell et al. “Dynamics, Computation, and the ”Edge ofChaos”:
A Re-Examination.” In: May (June 1993). arXiv: 9306003 [adap-org].

[49] James P. Crutchfield. “Between order and chaos.” In: Nat. Phys. 8.1 (Jan.
2012), pp. 17–24. ISSN: 17452473. DOI: 10.1038/nphys2190.

https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.1002/047174882X
https://arxiv.org/abs/ISBN 0-471-06259-6
https://doi.org/10.3389/frobt.2015.00005
https://arxiv.org/abs/1412.0291
https://doi.org/10.1103/PhysRevE.77.011901
https://doi.org/10.1103/PhysRevLett.111.177203
https://doi.org/10.1007/s12064-011-0146-8
https://arxiv.org/abs/9306003
https://doi.org/10.1038/nphys2190


B I B L IOGRAPHY 99

[50] Per Bak. How Nature Works. Springer New York, 1996. DOI: 10.1007/978-
1-4757-5426-1.

[51] James P. Sethna et al. “Crackling noise.” In:Nature 410.6825 (Mar. 2001),
pp. 242–250. ISSN: 0028-0836. DOI: 10.1038/35065675.

[52] R.K. Pathria andPaulD. Beale. StatisticalMechanics. 3rd.Academic Press,
2011. ISBN: 9780123821881. DOI: 10.1016/C2009-0-62310-2. arXiv: arXiv:
1011.1669v3.

[53] Álvaro Corral et al. “Phase transition , scaling of moments , and order-
parameter distributions in Brownian particles and branching processes
with finite-size effects.” In: Phys. Rev. E 062156.97 (2018), pp. 1–11. DOI:
10.1103/PhysRevE.97.062156. arXiv: 1804.02300.

[54] Leo P. Kadanoff. “Scaling laws for ising models near Tc.” In: Phys. Phys.
Fiz. 2.6 (June 1966), pp. 263–272. ISSN: 0554-128X. DOI: 10.1103/PhysicsPhysiqueFizika.
2.263.

[55] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statisti-
cal Physics. 1st. New York: Oxford University Press, 1999, p. 490. ISBN:
9783540773405.

[56] Grégoire Lemoult et al. “Directed percolation phase transition to sus-
tained turbulence inCouette flow.” In:Nat. Phys. 12.3 (Mar. 2016), pp. 254–
258. ISSN: 1745-2473. DOI: 10.1038/nphys3675.

[57] Moritz Lang andMikhail Shkolnikov. “Harmonic dynamics of the abelian
sandpile.” In: Proc. Natl. Acad. Sci. 116.8 (Feb. 2019), pp. 2821–2830. ISSN:
0027-8424. DOI: 10.1073/pnas.1812015116.

[58] Haye Hinrichsen. “Non-equilibrium phase transitions.” In: Phys. A Stat.
Mech. its Appl. 369.1 (Sept. 2006), pp. 1–28. ISSN: 03784371. DOI: 10.1016/
j.physa.2006.04.007.

[59] David A. Levin et al. “Glauber dynamics for themean-field IsingModel:
Cut-off, critical power law, and metastability.” In: Probab. Theory Relat.
Fields 146.1 (Oct. 2009), pp. 223–265. ISSN: 01788051. DOI: 10.1007/s00440-
008-0189-z. arXiv: 0712.0790.

[60] BarryA. Cipra. “An Introduction to the IsingModel.” In:Am.Math.Mon.
94.10 (1987), p. 937. ISSN: 00029890. DOI: 10.2307/2322600.

[61] D. Stauffer. “Social applications of two-dimensional Ising models.” In:
(2007), pp. 1–10. ISSN: 00029505. DOI: 10.1119/1.2779882. arXiv: 0706.
3983.

[62] W.-X. Zhou and D. Sornette. “Self-organizing Ising model of financial
markets.” In: Eur. Phys. J. B 55.2 (Jan. 2007), pp. 175–181. ISSN: 1434-6028.
DOI: 10.1140/epjb/e2006-00391-6.

[63] Lars Onsager. “Crystal Statistics. I. A Two-Dimensional Model with an
Order-Disorder Transition.” In: Phys. Rev. 65.3-4 (Feb. 1944), pp. 117–
149. ISSN: 0031-899X. DOI: 10.1103/PhysRev.65.117.

https://doi.org/10.1007/978-1-4757-5426-1
https://doi.org/10.1007/978-1-4757-5426-1
https://doi.org/10.1038/35065675
https://doi.org/10.1016/C2009-0-62310-2
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1103/PhysRevE.97.062156
https://arxiv.org/abs/1804.02300
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1038/nphys3675
https://doi.org/10.1073/pnas.1812015116
https://doi.org/10.1016/j.physa.2006.04.007
https://doi.org/10.1016/j.physa.2006.04.007
https://doi.org/10.1007/s00440-008-0189-z
https://doi.org/10.1007/s00440-008-0189-z
https://arxiv.org/abs/0712.0790
https://doi.org/10.2307/2322600
https://doi.org/10.1119/1.2779882
https://arxiv.org/abs/0706.3983
https://arxiv.org/abs/0706.3983
https://doi.org/10.1140/epjb/e2006-00391-6
https://doi.org/10.1103/PhysRev.65.117


100 B I B L IOGRAPHY

[64] S. R. Broadbent and J.M.Hammersley. “Percolation processes.” In:Math.
Proc. Cambridge Philos. Soc. 53.3 (July 1957), pp. 629–641. ISSN: 0305-0041.
DOI: 10.1017/S0305004100032680.

[65] Kazumasa A. Takeuchi et al. “Directed percolation criticality in turbu-
lent liquid crystals.” In:Phys. Rev. Lett. 99.23 (2007), pp. 1–4. ISSN: 00319007.
DOI: 10.1103/PhysRevLett.99.234503.

[66] Dietrich Aharony et al. Introduction to percolation theory. 2nd ed. Taylor
& Francis, Dec. 1992. ISBN: 0748400273,9780748400270. DOI: 10.1201/
9781315274386.

[67] Peter Grassberger and Yi-Cheng Zhang. ““Self-organized” formulation
of standard percolation phenomena.” In: Phys. A Stat. Mech. its Appl.
224.1-2 (Feb. 1996), pp. 169–179. ISSN: 03784371. DOI: 10.1016/0378-
4371(95)00321-5.

[68] S.A. A Kauffman. “Metabolic stability and epigenesis in randomly con-
structed genetic nets.” In: J. Theor. Biol. 22.3 (Mar. 1969), pp. 437–467.
ISSN: 00225193. DOI: 10.1016/0022-5193(69)90015-0.

[69] J. Socolar and S. Kauffman. “Scaling in Ordered and Critical Random
Boolean Networks.” In: Phys. Rev. Lett. 90.6 (Feb. 2003), p. 68702. ISSN:
0031-9007. DOI: 10.1103/PhysRevLett.90.068702.

[70] Maria Davidich and Stefan Bornholdt. “The transition from differential
equations to Boolean networks: a case study in simplifying a regulatory
network model.” In: J. Theor. Biol. 255.3 (Dec. 2008), pp. 269–277. ISSN:
1095-8541. DOI: 10.1016/j.jtbi.2008.07.020.

[71] Fangting Li et al. “The yeast cell-cycle network is robustly designed.”
In: Proc. Natl. Acad. Sci. U. S. A. 101.14 (Apr. 2004), pp. 4781–4786. ISSN:
0027-8424. DOI: 10.1073/pnas.0305937101.

[72] Jorge G. T. Zañudo et al. “Boolean Threshold Networks: Virtues and
Limitations for Biological Modeling.” In: Inf. Process. Biol. Syst. Ed. by
Samuli Niiranen and Andre Ribeiro. Vol. 11. Intelligent Systems Refer-
ence Library. Berlin,Heidelberg: Springer BerlinHeidelberg, 2011, pp. 113–
135. ISBN: 978-3-642-19620-1. DOI: 10.1007/978-3-642-19621-8.

[73] Thimo Rohlf and Stefan Bornholdt. “Criticality in random threshold net-
works: annealed approximation and beyond.” In: Phys. A Stat. Mech. its
Appl. 310.1-2 (July 2002), pp. 245–259. ISSN: 03784371. DOI: 10.1016/
S0378-4371(02)00798-7.

[74] Agnes Szejka et al. “The phase diagram of random threshold networks.”
In: New J. Phys. 10.6 (June 2008), p. 063009. ISSN: 1367-2630. DOI: 10 .
1088/1367-2630/10/6/063009. arXiv: 0807.0429.

[75] MAndrecut et al. “Maximal information transfer and behavior diversity
in Random Threshold Networks.” In: J. Comput. Biol. 16.7 (July 2009),
pp. 909–916. ISSN: 1557-8666. DOI: 10.1089/cmb.2009.0007.

https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1201/9781315274386
https://doi.org/10.1201/9781315274386
https://doi.org/10.1016/0378-4371(95)00321-5
https://doi.org/10.1016/0378-4371(95)00321-5
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1103/PhysRevLett.90.068702
https://doi.org/10.1016/j.jtbi.2008.07.020
https://doi.org/10.1073/pnas.0305937101
https://doi.org/10.1007/978-3-642-19621-8
https://doi.org/10.1016/S0378-4371(02)00798-7
https://doi.org/10.1016/S0378-4371(02)00798-7
https://doi.org/10.1088/1367-2630/10/6/063009
https://doi.org/10.1088/1367-2630/10/6/063009
https://arxiv.org/abs/0807.0429
https://doi.org/10.1089/cmb.2009.0007


B I B L IOGRAPHY 101

[76] Thimo Rohlf. “Critical line in random-threshold networks with inhomo-
geneous thresholds.” In: Phys. Rev. E 78.6 (Dec. 2008), p. 66118. ISSN:
1539-3755. DOI: 10.1103/PhysRevE.78.066118. arXiv: 0707.3621.

[77] Joao Pinheiro Neto et al. “Inhibition as a determinant of activity and
criticality in dynamical networks.” In: arXiv 2.2 (2017), pp. 1–10. arXiv:
1712.08816v1.

[78] Daniel B. Larremore et al. “Inhibition Causes Ceaseless Dynamics in
Networks of Excitable Nodes.” In: Phys. Rev. Lett. 112.13 (Apr. 2014),
p. 138103. ISSN: 0031-9007. DOI: 10 . 1103 / PhysRevLett . 112 . 138103.
arXiv: 1307.7658.

[79] Rui-Sheng Wang and Réka Albert. “Effects of community structure on
the dynamics of random threshold networks.” In: Phys. Rev. E 87.1 (Jan.
2013), p. 012810. ISSN: 1539-3755. DOI: 10.1103/PhysRevE.87.012810.

[80] RodrigoPoblanno-Balp andCarlosGershenson. “Modular randomBoolean
networks.” In: Artif. Life 17.4 (Jan. 2011), pp. 331–351. ISSN: 1064-5462.
DOI: 10.1162/artl_a_00042. arXiv: 1101.1893.

[81] Per Bak et al. “Self-organized criticality: An explanation of the 1/f noise.”
In: Phys. Rev. Lett. 59.4 (July 1987), pp. 381–384. ISSN: 0031-9007. DOI:
10.1103/PhysRevLett.59.381.

[82] S. Lübeck and K. D. Usadel. “Numerical determination of the avalanche
exponents of the Bak-Tang-Wiesenfeld model.” In: Phys. Rev. E - Stat.
Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 55.4 (1997), pp. 4095–4099.
ISSN: 1063651X. DOI: 10.1103/PhysRevE.55.4095. arXiv: 9702059 [cond-
mat].

[83] PaoloMoretti andMiguel a Muñoz. “Griffiths phases and the stretching
of criticality in brain networks.” In: Nat. Commun. 4 (Jan. 2013), p. 2521.
ISSN: 2041-1723. DOI: 10.1038/ncomms3521.

[84] Ronald Dickman et al. “Paths to self-organized criticality.” In: Brazilian J.
Phys. 30.1 (Mar. 2000), pp. 27–41. ISSN: 0103-9733. DOI: 10.1590/S0103-
97332000000100004.

[85] Roman Frigg. “Self-organised criticality -What it is andwhat it isn’t.” In:
Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci. 34 (2003),
pp. 613–632. ISSN: 13698486. DOI: 10.1016/S0039-3681(03)00046-3.

[86] Nicholas W. Watkins et al. “25 Years of Self-organized Criticality: Con-
cepts and Controversies.” In: Space Sci. Rev. 198.1-4 (Jan. 2016), pp. 3–44.
ISSN: 0038-6308. DOI: 10.1007/s11214-015-0155-x. arXiv: 1504.04991.

[87] Gunnar Pruessner. Self-OrganisedCriticality. Cambridge: CambridgeUni-
versity Press, 2012, pp. 1–494. ISBN: 9780511977671. DOI: 10.1017/CBO9780511977671.

[88] S. S. Manna. “Two-state model of self-organized criticality.” In: J. Phys.
A. Math. Gen. 24.7 (Apr. 1991), pp. L363–L369. ISSN: 0305-4470. DOI: 10.
1088/0305-4470/24/7/009.

https://doi.org/10.1103/PhysRevE.78.066118
https://arxiv.org/abs/0707.3621
https://arxiv.org/abs/1712.08816v1
https://doi.org/10.1103/PhysRevLett.112.138103
https://arxiv.org/abs/1307.7658
https://doi.org/10.1103/PhysRevE.87.012810
https://doi.org/10.1162/artl_a_00042
https://arxiv.org/abs/1101.1893
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevE.55.4095
https://arxiv.org/abs/9702059
https://arxiv.org/abs/9702059
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1016/S0039-3681(03)00046-3
https://doi.org/10.1007/s11214-015-0155-x
https://arxiv.org/abs/1504.04991
https://doi.org/10.1017/CBO9780511977671
https://doi.org/10.1088/0305-4470/24/7/009
https://doi.org/10.1088/0305-4470/24/7/009


102 B I B L IOGRAPHY

[89] A. M. Alencar et al. “Self-organized percolation.” In: Phys. Rev. E - Stat.
Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56.3 (1997), R2379–R2382.
ISSN: 1063651X. DOI: 10.1103/PhysRevE.56.R2379.

[90] Bartolo Luque et al. “Self-organized critical random Boolean networks.”
In: Phys. Rev. E 63.5 (Apr. 2001), p. 51913. ISSN: 1063-651X. DOI: 10.1103/
PhysRevE.63.051913.

[91] Stefan Bornholdt and Torsten Röhl. “Self-organized critical neural net-
works.” In: Phys. Rev. E 67.6 (June 2003), p. 66118. ISSN: 1063-651X. DOI:
10.1103/PhysRevE.67.066118.

[92] Matthias Rybarsch and Stefan Bornholdt. “Avalanches in self-organized
critical neural networks: a minimal model for the neural SOC univer-
sality class.” In: PLoS One 9.4 (Jan. 2014), e93090. ISSN: 1932-6203. DOI:
10.1371/journal.pone.0093090.

[93] Kim Christensen et al. “Unified scaling law for earthquakes.” In: Proc.
Natl. Acad. Sci. 99.Supplement 1 (Feb. 2002), pp. 2509–2513. ISSN: 0027-
8424. DOI: 10.1073/pnas.012581099.

[94] H. E. Stanley et al. “Self-organized complexity in economics andfinance.”
In:Proc. Natl. Acad. Sci. 99.Supplement 1 (Feb. 2002), pp. 2561–2565. ISSN:
0027-8424. DOI: 10.1073/pnas.022582899.

[95] Dante R. Chialvo. “Emergent complex neural dynamics.” In: Nat. Phys.
6.10 (Oct. 2010), pp. 744–750. ISSN: 1745-2473. DOI: 10.1038/nphys1803.
arXiv: 1010.2530.

[96] a. Levina et al. “Dynamical synapses causing self-organized criticality
in neural networks.” In: Nat. Phys. 3.12 (Nov. 2007), pp. 857–860. ISSN:
1745-2473. DOI: 10.1038/nphys758.

[97] Janina Hesse and Thilo Gross. “Self-organized criticality as a fundamen-
tal property of neural systems.” In: Front. Syst. Neurosci. 8.September
(Sept. 2014), pp. 1–14. ISSN: 1662-5137. DOI: 10.3389/fnsys.2014.00166.

[98] Sheng-Jun Wang et al. “Sustained activity in hierarchical modular neu-
ral networks: self-organized criticality and oscillations.” In: Front. Com-
put. Neurosci. 5.June (Jan. 2011), p. 30. ISSN: 1662-5188. DOI: 10.3389/
fncom.2011.00030.

[99] Mikail Rubinov et al. “Neurobiologically realistic determinants of Self-
Organized criticality in networks of spiking neurons.” In: PLoS Comput.
Biol. 7.6 (2011). ISSN: 1553734X. DOI: 10.1371/journal.pcbi.1002038.

[100] Jens Wilting et al. “Operating in a Reverberating Regime Enables Rapid
Tuning ofNetwork States to Task Requirements.” In: Front. Syst. Neurosci.
12.November (Nov. 2018). ISSN: 1662-5137. DOI: 10.3389/fnsys.2018.
00055.

https://doi.org/10.1103/PhysRevE.56.R2379
https://doi.org/10.1103/PhysRevE.63.051913
https://doi.org/10.1103/PhysRevE.63.051913
https://doi.org/10.1103/PhysRevE.67.066118
https://doi.org/10.1371/journal.pone.0093090
https://doi.org/10.1073/pnas.012581099
https://doi.org/10.1073/pnas.022582899
https://doi.org/10.1038/nphys1803
https://arxiv.org/abs/1010.2530
https://doi.org/10.1038/nphys758
https://doi.org/10.3389/fnsys.2014.00166
https://doi.org/10.3389/fncom.2011.00030
https://doi.org/10.3389/fncom.2011.00030
https://doi.org/10.1371/journal.pcbi.1002038
https://doi.org/10.3389/fnsys.2018.00055
https://doi.org/10.3389/fnsys.2018.00055


B I B L IOGRAPHY 103

[101] Christian Tetzlaff et al. “Self-Organized Criticality in Developing Neu-
ronal Networks.” In: PLoS Comput. Biol. 6.12 (Dec. 2010). Ed. by Karl J.
Friston, e1001013. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1001013.

[102] Thomas Vojta. “Rare region effects at classical, quantum and nonequi-
librium phase transitions.” In: J. Phys. A. Math. Gen. 39.22 (June 2006),
R143–R205. ISSN: 0305-4470. DOI: 10.1088/0305-4470/39/22/R01. arXiv:
0602312 [cond-mat].

[103] Pablo Villegas et al. “Intrinsic noise and deviations from criticality in
Boolean gene-regulatory networks.” In: Sci. Rep. 6.1 (Dec. 2016), p. 34743.
ISSN: 2045-2322. DOI: 10.1038/srep34743. arXiv: 1606.03235.

[104] Adriana G.Moreira and RonaldDickman. “Critical dynamics of the con-
tact process with quenched disorder.” In: Phys. Rev. E - Stat. Physics, Plas-
mas, Fluids, Relat. Interdiscip. Top. 54.4 (Oct. 1996), R3090–R3093. ISSN:
1063651X. DOI: 10 . 1103 / PhysRevE . 54 . R3090. arXiv: 9604148 [cond-
mat].

[105] A. J. Bray. “Nature of the Griffiths phase.” In: Phys. Rev. Lett. 59.5 (Aug.
1987), pp. 586–589. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.59.586.

[106] Miguel a. Muñoz et al. “Griffiths Phases on Complex Networks.” In:
Phys. Rev. Lett. 105.12 (Sept. 2010), p. 128701. ISSN: 0031-9007. DOI: 10.
1103/PhysRevLett.105.128701.

[107] PaoloMoretti andMiguel a Muñoz. “Griffiths phases and the stretching
of criticality in brain networks.” In: Nat. Commun. 4 (Jan. 2013), p. 2521.
ISSN: 2041-1723. DOI: 10.1038/ncomms3521.

[108] Olaf Sporns. “The human connectome: A complex network.” In:Ann. N.
Y. Acad. Sci. 1224 (2011), pp. 109–125. ISSN: 00778923. DOI: 10.1111/j.
1749-6632.2010.05888.x.

[109] Olaf Sporns.Networks of the Brain. Cambridge:MIT Press, 2010. ISBN: 978-
0262014694.

[110] T. E. Harris. The Theory of Branching Processes. Berlin: Springer-Verlag,
Feb. 1963, p. 119. ISBN: 978-3-642-51868-3.

[111] JohannesZierenberg et al. “Description of spreadingdynamics bymicro-
scopic network models and macroscopic branching processes can differ
due to coalescence.” In: Phys. Rev. E 101.2 (Feb. 2020), p. 022301. ISSN:
2470-0045. DOI: 10.1103/PhysRevE.101.022301. arXiv: 1905.10402.

[112] C. R. Heathcote. “A Branching Process Allowing Immigration.” In: J. R.
Stat. Soc. Ser. B 27.1 (1965), pp. 138–143. DOI: 10.1111/j.2517- 6161.
1965.tb00596.x.

[113] Lasse Laurson et al. “The effect of thresholding on temporal avalanche
statistics.” In: J. Stat. Mech. Theory Exp. 2009.01 (Jan. 2009), P01019. ISSN:
1742-5468. DOI: 10.1088/1742-5468/2009/01/P01019.

https://doi.org/10.1371/journal.pcbi.1001013
https://doi.org/10.1088/0305-4470/39/22/R01
https://arxiv.org/abs/0602312
https://doi.org/10.1038/srep34743
https://arxiv.org/abs/1606.03235
https://doi.org/10.1103/PhysRevE.54.R3090
https://arxiv.org/abs/9604148
https://arxiv.org/abs/9604148
https://doi.org/10.1103/PhysRevLett.59.586
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1103/PhysRevE.101.022301
https://arxiv.org/abs/1905.10402
https://doi.org/10.1111/j.2517-6161.1965.tb00596.x
https://doi.org/10.1111/j.2517-6161.1965.tb00596.x
https://doi.org/10.1088/1742-5468/2009/01/P01019


104 B I B L IOGRAPHY

[114] Francesc Font-Clos et al. “The perils of thresholding.” In: New J. Phys.
17.4 (Apr. 2015), p. 043066. ISSN: 1367-2630. DOI: 10.1088/1367-2630/
17/4/043066.

[115] PabloVillegas et al. “Time-series thresholding and thedefinition of avalanche
size.” In: Phys. Rev. E 100.1 (July 2019), p. 012133. ISSN: 2470-0045. DOI:
10.1103/PhysRevE.100.012133.

[116] Serena di Santo et al. “Simple unified view of branching process statis-
tics: Random walks in balanced logarithmic potentials.” In: Phys. Rev. E
95.3 (Mar. 2017), p. 032115. ISSN: 2470-0045. DOI: 10.1103/PhysRevE.95.
032115. arXiv: 1612.07183.

[117] Heiko J. Luhmann et al. “Spontaneous neuronal activity in developing
neocortical networks: From single cells to large-scale interactions.” In:
Front. Neural Circuits 10.MAY (2016), pp. 1–14. ISSN: 16625110. DOI: 10.
3389/fncir.2016.00040.

[118] Yang-YuLiu et al. “Controllability of complex networks.” In:Nature 473.7346
(May 2011), pp. 167–173. ISSN: 1476-4687. DOI: 10.1038/nature10011.

[119] AdilsonE.Motter. “Networkcontrology.” In:Chaos 25.9 (2015). ISSN: 10541500.
DOI: 10.1063/1.4931570.

[120] M.E. E J. Newman.Networks. Oxford University Press, Mar. 2010, p. 720.
ISBN: 9780199206650. DOI: 10.1093/acprof:oso/9780199206650.001.
0001.

[121] P. J. Hellyer et al. “The Control of Global Brain Dynamics: Opposing
Actions of Frontoparietal Control and Default Mode Networks on At-
tention.” In: J. Neurosci. 34.2 (2014), pp. 451–461. ISSN: 0270-6474. DOI:
10.1523/JNEUROSCI.1853-13.2014.

[122] Peter J. Hellyer et al. “Local inhibitory plasticity tunesmacroscopic brain
dynamics and allows the emergence of functional brain networks.” In:
Neuroimage 124 (Jan. 2016), pp. 85–95. ISSN: 10538119. DOI: 10.1016/j.
neuroimage.2015.08.069.

[123] Rui Li et al. “Controllability and observability of Boolean networks aris-
ing from biology.” In: Chaos 25.2 (2015), p. 23104. ISSN: 1054-1500. DOI:
10.1063/1.4907708.

[124] Jason Z Kim et al. “Role of graph architecture in controlling dynamical
networks with applications to neural systems.” In:Nat. Phys. September
(Sept. 2017). ISSN: 1745-2473. DOI: 10.1038/nphys4268.

[125] Gang Yan et al. “Network control principles predict neuron function
in the Caenorhabditis elegans connectome.” In: Nature 550.7677 (Oct.
2017), pp. 519–523. ISSN: 0028-0836. DOI: 10.1038/nature24056.

[126] Lin Wu et al. Controllability and Its Applications to Biological Networks. Jan.
2019. DOI: 10.1007/s11390-019-1896-x.

https://doi.org/10.1088/1367-2630/17/4/043066
https://doi.org/10.1088/1367-2630/17/4/043066
https://doi.org/10.1103/PhysRevE.100.012133
https://doi.org/10.1103/PhysRevE.95.032115
https://doi.org/10.1103/PhysRevE.95.032115
https://arxiv.org/abs/1612.07183
https://doi.org/10.3389/fncir.2016.00040
https://doi.org/10.3389/fncir.2016.00040
https://doi.org/10.1038/nature10011
https://doi.org/10.1063/1.4931570
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1523/JNEUROSCI.1853-13.2014
https://doi.org/10.1016/j.neuroimage.2015.08.069
https://doi.org/10.1016/j.neuroimage.2015.08.069
https://doi.org/10.1063/1.4907708
https://doi.org/10.1038/nphys4268
https://doi.org/10.1038/nature24056
https://doi.org/10.1007/s11390-019-1896-x


B I B L IOGRAPHY 105

[127] Richard Otter. “The Multiplicative Process.” In: Ann. Math. Stat. 20.2
(1949), pp. 206–224. ISSN: 0003-4851. DOI: 10.1214/aoms/1177730031.

[128] Najja Marshall et al. “Analysis of Power Laws, Shape Collapses, and
NeuralComplexity:NewTechniques andMATLABSupport via theNCC
Toolbox.” In: Front. Physiol. 7.June (2016), pp. 1–18. ISSN: 1664-042X. DOI:
10.3389/fphys.2016.00250.

[129] Stefanos Papanikolaou et al. “Universality beyond power laws and the
average avalanche shape.” In: Nat. Phys. 7.4 (2011), pp. 316–320. ISSN:
17452481. DOI: 10.1038/nphys1884.

[130] Andrea Baldassarri et al. “Average Shape of a Fluctuation: Universality
in Excursions of Stochastic Processes.” In: Phys. Rev. Lett. 90.6 (2003),
p. 060601. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.90.060601. arXiv:
0301068 [cond-mat].

[131] E. D. Gireesh and D. Plenz. “Neuronal avalanches organize as nested
theta- andbeta/gamma-oscillations duringdevelopment of cortical layer
2/3.” In: Proc. Natl. Acad. Sci. 105.21 (May 2008), pp. 7576–7581. ISSN:
0027-8424. DOI: 10.1073/pnas.0800537105.

[132] Thomas Petermann et al. “Spontaneous cortical activity in awake mon-
keys composed of neuronal avalanches.” In: Proc. Natl. Acad. Sci. 106.37
(Sept. 2009), pp. 15921–15926. ISSN: 0027-8424. DOI: 10.1073/pnas.0904089106.

[133] Andreas Klaus et al. “Statistical analyses support power law distribu-
tions found in neuronal avalanches.” In:PLoSOne 6.5 (2011). ISSN: 19326203.
DOI: 10.1371/journal.pone.0019779.

[134] Nir Friedman et al. “Universal critical dynamics in high resolution neu-
ronal avalanche data.” In: Phys. Rev. Lett. 108.20 (2012), pp. 1–5. ISSN:
00319007. DOI: 10.1103/PhysRevLett.108.208102.

[135] C. Meisel et al. “Fading Signatures of Critical Brain Dynamics during
SustainedWakefulness inHumans.” In: J. Neurosci. 33.44 (2013), pp. 17363–
17372. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.1516-13.2013.

[136] J. Matias Palva et al. “Neuronal long-range temporal correlations and
avalanche dynamics are correlated with behavioral scaling laws.” In:
Proc. Natl. Acad. Sci. 110.9 (Feb. 2013), pp. 3585–3590. ISSN: 0027-8424.
DOI: 10.1073/pnas.1216855110.

[137] Viola Priesemann et al. “Neuronal Avalanches Differ from Wakefulness
to Deep Sleep – Evidence from Intracranial Depth Recordings in Hu-
mans.” In: PLoS Comput. Biol. 9.3 (Mar. 2013), e1002985. ISSN: 1553-7358.
DOI: 10.1371/journal.pcbi.1002985.

[138] O. Shriki et al. “Neuronal Avalanches in the RestingMEG of the Human
Brain.” In: J. Neurosci. 33.16 (Apr. 2013), pp. 7079–7090. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.4286-12.2013.

https://doi.org/10.1214/aoms/1177730031
https://doi.org/10.3389/fphys.2016.00250
https://doi.org/10.1038/nphys1884
https://doi.org/10.1103/PhysRevLett.90.060601
https://arxiv.org/abs/0301068
https://doi.org/10.1073/pnas.0800537105
https://doi.org/10.1073/pnas.0904089106
https://doi.org/10.1371/journal.pone.0019779
https://doi.org/10.1103/PhysRevLett.108.208102
https://doi.org/10.1523/JNEUROSCI.1516-13.2013
https://doi.org/10.1073/pnas.1216855110
https://doi.org/10.1371/journal.pcbi.1002985
https://doi.org/10.1523/JNEUROSCI.4286-12.2013


106 B I B L IOGRAPHY

[139] G. Scott et al. “Voltage Imaging of Waking Mouse Cortex Reveals Emer-
gence ofCriticalNeuronalDynamics.” In: J. Neurosci. 34.50 (2014), pp. 16611–
16620. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.3474-14.2014.

[140] O. Arviv et al. “Near-Critical Dynamics in Stimulus-Evoked Activity of
the Human Brain and Its Relation to Spontaneous Resting-State Activ-
ity.” In: J. Neurosci. 35.41 (Oct. 2015), pp. 13927–13942. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.0477-15.2015.

[141] Timothy Bellay et al. “Irregular spiking of pyramidal neurons organizes
as scale-invariant neuronal avalanches in the awake state.” In:Elife 4.JULY
2015 (2015), pp. 1–25. ISSN: 2050084X. DOI: 10.7554/eLife.07224.

[142] E. D. Fagerholm et al. “Cascades and Cognitive State: Focused Attention
Incurs Subcritical Dynamics.” In: J. Neurosci. 35.11 (2015), pp. 4626–4634.
ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.3694-14.2015.

[143] Paolo Massobrio et al. “Self-organized criticality in cortical assemblies
occurs in concurrent scale-free and small-world networks.” In: Sci. Rep.
5.June (2015), pp. 1–16. ISSN: 20452322. DOI: 10.1038/srep10578.

[144] Woodrow L. Shew et al. “Adaptation to sensory input tunes visual cor-
tex to criticality.” In: Nat. Phys. 11.8 (Aug. 2015), pp. 659–663. ISSN: 1745-
2473. DOI: 10.1038/nphys3370.

[145] Wesley P. Clawson et al. “Adaptation towards scale-free dynamics im-
proves cortical stimulus discrimination at the cost of reduced detection.”
In: PLOS Comput. Biol. 13.5 (May 2017), e1005574. ISSN: 1553-7358. DOI:
10.1371/journal.pcbi.1005574.

[146] Gerald Hahn et al. “Spontaneous cortical activity is transiently poised
close to criticality.” In: PLOS Comput. Biol. 13.5 (May 2017). Ed. by Claus
C. Hilgetag, e1005543. ISSN: 1553-7358. DOI: 10 . 1371 / journal . pcbi .
1005543.

[147] Mohammad Yaghoubi et al. “Neuronal avalanche dynamics indicates
different universality classes in neuronal cultures.” In: Sci. Rep. 8.1 (Dec.
2018), p. 3417. ISSN: 2045-2322. DOI: 10.1038/s41598-018-21730-1.

[148] Adrián Ponce-Alvarez et al. “Whole-Brain Neuronal Activity Displays
Crackling Noise Dynamics.” In:Neuron 100.6 (Dec. 2018), 1446–1459.e6.
ISSN: 08966273. DOI: 10.1016/j.neuron.2018.10.045.

[149] H. Bocaccio et al. “The avalanche-like behaviour of large-scale haemo-
dynamic activity from wakefulness to deep sleep.” In: J. R. Soc. Interface
16.158 (2019). ISSN: 17425662. DOI: 10.1098/rsif.2019.0262.

[150] Karlis Kanders et al. “Fingerprints of a second order critical line in de-
veloping neural networks.” In:Commun. Phys. 3.1 (Dec. 2020), p. 13. ISSN:
2399-3650. DOI: 10.1038/s42005-019-0276-8.

https://doi.org/10.1523/JNEUROSCI.3474-14.2014
https://doi.org/10.1523/JNEUROSCI.0477-15.2015
https://doi.org/10.7554/eLife.07224
https://doi.org/10.1523/JNEUROSCI.3694-14.2015
https://doi.org/10.1038/srep10578
https://doi.org/10.1038/nphys3370
https://doi.org/10.1371/journal.pcbi.1005574
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1038/s41598-018-21730-1
https://doi.org/10.1016/j.neuron.2018.10.045
https://doi.org/10.1098/rsif.2019.0262
https://doi.org/10.1038/s42005-019-0276-8


B I B L IOGRAPHY 107

[151] György Buzsáki et al. “The origin of extracellular fields and currents —
EEG, ECoG, LFP and spikes.” In: Nat. Rev. Neurosci. 13.6 (June 2012),
pp. 407–420. ISSN: 1471-003X. DOI: 10.1038/nrn3241.

[152] Philipp J. Keller et al. “Fast, high-contrast imaging of animal develop-
mentwith scanned light sheet-based structured-illuminationmicroscopy.”
In: Nat. Methods 7.8 (Aug. 2010), pp. 637–642. ISSN: 15487091. DOI: 10.
1038/nmeth.1476.

[153] Weijian Yang et al. “Simultaneous Multi-plane Imaging of Neural Cir-
cuits.” In: Neuron 89.2 (Jan. 2016), p. 269. ISSN: 10974199. DOI: 10.1016/
j.neuron.2015.12.012.

[154] Masashi Kondo et al. “Two-Photon calcium imaging of the medial pre-
frontal cortex and hippocampus without cortical invasion.” In: Elife 6
(Sept. 2017). ISSN: 2050084X. DOI: 10.7554/eLife.26839.

[155] Shan Yu et al. “Scale-Invariant Neuronal Avalanche Dynamics and the
Cut-Off in Size Distributions.” In: PLoSOne 9.6 (June 2014), e99761. ISSN:
1932-6203. DOI: 10.1371/journal.pone.0099761.

[156] TiagoL. Ribeiro et al. “Spike avalanches exhibit universal dynamics across
the sleep-wake cycle.” In: PLoS One 5.11 (2010). ISSN: 19326203. DOI: 10.
1371/journal.pone.0014129. arXiv: 1101.2434.

[157] Enzo Tagliazucchi et al. “Large-scale signatures of unconsciousness are
consistentwith a departure from critical dynamics.” In: J. R. Soc. Interface
13.114 (Jan. 2016), p. 20151027. ISSN: 1742-5689. DOI: 10.1098/rsif.2015.
1027.

[158] Takahiro Ezaki et al. “Closer to critical resting-state neural dynamics in
individuals with higher fluid intelligence.” In: Commun. Biol. 3.1 (Dec.
2020), p. 52. ISSN: 2399-3642. DOI: 10.1038/s42003-020-0774-y.

[159] Mark M. Churchland et al. “Stimulus onset quenches neural variability:
A widespread cortical phenomenon.” In:Nat. Neurosci. 13.3 (Mar. 2010),
pp. 369–378. ISSN: 10976256. DOI: 10.1038/nn.2501.

[160] Adrián Ponce-Alvarez et al. “Task-Driven Activity Reduces the Cortical
Activity Space of the Brain: Experiment and Whole-Brain Modeling.”
In: PLoS Comput. Biol. 11.8 (Aug. 2015), e1004445. ISSN: 15537358. DOI:
10.1371/journal.pcbi.1004445.

[161] Christian Meisel et al. “Failure of adaptive self-organized criticality dur-
ing epileptic seizure attacks.” In:PLoSComput. Biol. 8.1 (2012). ISSN: 1553734X.
DOI: 10.1371/journal.pcbi.1002312. arXiv: 1105.4786.

[162] Gregory A Worrell et al. “Evidence for self-organized criticality in hu-
man epileptic hippocampus.” In:Neuroreport 13.16 (Nov. 2002), pp. 2017–
2021. ISSN: 0959-4965. DOI: 10.1097/00001756-200211150-00005.

https://doi.org/10.1038/nrn3241
https://doi.org/10.1038/nmeth.1476
https://doi.org/10.1038/nmeth.1476
https://doi.org/10.1016/j.neuron.2015.12.012
https://doi.org/10.1016/j.neuron.2015.12.012
https://doi.org/10.7554/eLife.26839
https://doi.org/10.1371/journal.pone.0099761
https://doi.org/10.1371/journal.pone.0014129
https://doi.org/10.1371/journal.pone.0014129
https://arxiv.org/abs/1101.2434
https://doi.org/10.1098/rsif.2015.1027
https://doi.org/10.1098/rsif.2015.1027
https://doi.org/10.1038/s42003-020-0774-y
https://doi.org/10.1038/nn.2501
https://doi.org/10.1371/journal.pcbi.1004445
https://doi.org/10.1371/journal.pcbi.1002312
https://arxiv.org/abs/1105.4786
https://doi.org/10.1097/00001756-200211150-00005


108 B I B L IOGRAPHY

[163] M. Breakspear et al. “A unifying explanation of primary generalized
seizures through nonlinear brain modeling and bifurcation analysis.”
In:Cereb. Cortex 16.9 (2006), pp. 1296–1313. ISSN: 10473211. DOI: 10.1093/
cercor/bhj072.

[164] Viktor K. Jirsa et al. “On the nature of seizure dynamics.” In: Brain 137.8
(2014), pp. 2210–2230. ISSN: 14602156. DOI: 10.1093/brain/awu133.

[165] P. Suffczynski et al. “Dynamics of non-convulsive epileptic phenomena
modeled by a bistable neuronal network.” In: Neuroscience 126.2 (2004),
pp. 467–484. ISSN: 03064522. DOI: 10.1016/j.neuroscience.2004.03.
014.

[166] Orrin Devinsky et al. “Epilepsy.” In: Nat. Rev. Dis. Prim. 4.May (2018).
ISSN: 2056676X. DOI: 10.1038/nrdp.2018.24.

[167] Christian Meisel. “Antiepileptic drugs induce subcritical dynamics in
human cortical networks.” In: Proc. Natl. Acad. Sci. 117.20 (May 2020),
pp. 11118–11125. ISSN: 0027-8424. DOI: 10.1073/pnas.1911461117. arXiv:
1904.13026.

[168] Piotr Milanowski and Piotr Suffczynski. “Seizures Start without Com-
mon Signatures of Critical Transition.” In: Int. J. Neural Syst. 26.8 (2016),
pp. 1–15. ISSN: 17936462. DOI: 10.1142/S0129065716500532.

[169] Theresa Wilkat et al. “No evidence for critical slowing down prior to
human epileptic seizures.” In: Chaos 29.9 (2019), pp. 2–7. ISSN: 10541500.
DOI: 10.1063/1.5122759. arXiv: 1908.08973.

[170] Annika Hagemann et al. “No evidence that epilepsy impacts criticality
in pre-seizure single-neuron activity of human cortex.” In: (2020), pp. 1–
19. arXiv: 2004.10642.

[171] Jiangbo Pu et al. “Developing neuronal networks: self-organized critical-
ity predicts the future.” In: Sci. Rep. 3 (Jan. 2013), p. 1081. ISSN: 2045-2322.
DOI: 10.1038/srep01081.

[172] Felipe Yaroslav Kalle Kossio et al. “Growing Critical: Self-Organized
Criticality in aDevelopingNeural System.” In:Phys. Rev. Lett. 121.5 (2018),
p. 58301. ISSN: 10797114. DOI: 10.1103/PhysRevLett.121.058301. arXiv:
1811.02861.

[173] Johannes Zierenberg et al. “Homeostatic Plasticity and External Input
Shape Neural Network Dynamics.” In: Phys. Rev. X 8.3 (2018), p. 31018.
ISSN: 21603308. DOI: 10.1103/PhysRevX.8.031018. arXiv: 1807.01479.

[174] V. Pasquale et al. “Self-organization andneuronal avalanches in networks
of dissociated cortical neurons.” In:Neuroscience 153.4 (June 2008), pp. 1354–
1369. ISSN: 03064522. DOI: 10.1016/j.neuroscience.2008.03.050.

https://doi.org/10.1093/cercor/bhj072
https://doi.org/10.1093/cercor/bhj072
https://doi.org/10.1093/brain/awu133
https://doi.org/10.1016/j.neuroscience.2004.03.014
https://doi.org/10.1016/j.neuroscience.2004.03.014
https://doi.org/10.1038/nrdp.2018.24
https://doi.org/10.1073/pnas.1911461117
https://arxiv.org/abs/1904.13026
https://doi.org/10.1142/S0129065716500532
https://doi.org/10.1063/1.5122759
https://arxiv.org/abs/1908.08973
https://arxiv.org/abs/2004.10642
https://doi.org/10.1038/srep01081
https://doi.org/10.1103/PhysRevLett.121.058301
https://arxiv.org/abs/1811.02861
https://doi.org/10.1103/PhysRevX.8.031018
https://arxiv.org/abs/1807.01479
https://doi.org/10.1016/j.neuroscience.2008.03.050


B I B L IOGRAPHY 109

[175] Emilia Biffi et al. “The influence of neuronal density and maturation on
network activity of hippocampal cell cultures: Amethodological study.”
In: PLoS One 8.12 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.
0083899.

[176] M. Ivenshitz andM. Segal. “NeuronalDensityDeterminesNetworkCon-
nectivity and Spontaneous Activity in Cultured Hippocampus.” In: J.
Neurophysiol. 104.2 (2010), pp. 1052–1060. ISSN: 0022-3077. DOI: 10.1152/
jn.00914.2009.

[177] JensWilting andViola Priesemann. “BetweenPerfectlyCritical andFully
Irregular: A Reverberating Model Captures and Predicts Cortical Spike
Propagation.” In: Cereb. Cortex 29.6 (June 2019), pp. 2759–2770. ISSN:
1047-3211. DOI: 10.1093/cercor/bhz049.

[178] JensWilting andViola Priesemann. “Inferring collective dynamical states
from widely unobserved systems.” In: Nat. Commun. 9.1 (Aug. 2018),
p. 2325. ISSN: 2041-1723. DOI: 10.1038/s41467-018-04725-4.

[179] V. Priesemann et al. “Spike avalanches in vivo suggest a driven, slightly
subcritical brain state.” In: Front. Syst. Neurosci. 8.June (2014), p. 108. ISSN:
16625137. DOI: 10.3389/fnsys.2014.00108.

[180] Adiel Statman et al. “Synaptic Size Dynamics as an Effectively Stochas-
tic Process.” In: PLoS Comput. Biol. 10.10 (2014). ISSN: 15537358. DOI: 10.
1371/journal.pcbi.1003846.

[181] Jin-Feng Feng Wang et al. “A review of spatial sampling.” In: Spat. Stat.
2.1 (Dec. 2012), pp. 1–14. ISSN: 22116753. DOI: 10.1016/j.spasta.2012.
08.001.

[182] Sharon L. Lohr. Sampling. Vol. 42. 2. Chapman andHall/CRC, Apr. 2019,
p. 223. ISBN: 9780429296284. DOI: 10.1201/9780429296284.

[183] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Ran-
dom Networks.” In: Science (80-. ). 286.5439 (Oct. 1999), pp. 509–512.
ISSN: 00368075. DOI: 10.1126/science.286.5439.509.

[184] Michael P H Stumpf et al. “Subnets of scale-free networks are not scale-
free: sampling properties of networks.” In: Proc. Natl. Acad. Sci. U. S. A.
102.12 (2005), pp. 4221–4. ISSN: 0027-8424. DOI: 10.1073/pnas.0501179102.

[185] Shy Shoham et al. “How silent is the brain: Is there a ”darkmatter” prob-
lem in neuroscience?” In: J. Comp. Physiol. A Neuroethol. Sensory, Neural,
Behav. Physiol. 192.8 (2006), pp. 777–784. ISSN: 03407594. DOI: 10.1007/
s00359-006-0117-6.

[186] Johannes Zierenberg et al. “Scaling properties of a parallel implementa-
tion of the multicanonical algorithm.” In: Comput. Phys. Commun. 184.4
(2013), pp. 1155–1160. ISSN: 00104655. DOI: 10.1016/j.cpc.2012.12.006.

https://doi.org/10.1371/journal.pone.0083899
https://doi.org/10.1371/journal.pone.0083899
https://doi.org/10.1152/jn.00914.2009
https://doi.org/10.1152/jn.00914.2009
https://doi.org/10.1093/cercor/bhz049
https://doi.org/10.1038/s41467-018-04725-4
https://doi.org/10.3389/fnsys.2014.00108
https://doi.org/10.1371/journal.pcbi.1003846
https://doi.org/10.1371/journal.pcbi.1003846
https://doi.org/10.1016/j.spasta.2012.08.001
https://doi.org/10.1016/j.spasta.2012.08.001
https://doi.org/10.1201/9780429296284
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1073/pnas.0501179102
https://doi.org/10.1007/s00359-006-0117-6
https://doi.org/10.1007/s00359-006-0117-6
https://doi.org/10.1016/j.cpc.2012.12.006


110 B I B L IOGRAPHY

[187] Jonathan Gross et al. “Massively parallel multicanonical simulations.”
In: Comput. Phys. Commun. 224 (Mar. 2018), pp. 387–395. ISSN: 00104655.
DOI: 10.1016/j.cpc.2017.10.018.

[188] EdoardoMilotti. “1/FNoise: a Pedagogical Review.” In: arXiv Prepr. physics/0204033
(Apr. 2002), p. 26. DOI: 10.1016/j.jep.2010.11.024. arXiv: 0204033
[physics].

[189] F. N. Hooge. “1/F Noise.” In: Phys. B+C 83.1 (1976), pp. 14–23. ISSN:
03784363. DOI: 10.1016/0378-4363(76)90089-9.

[190] ToshimitsuMusha andMitsuaki Yamamoto. “1/f fluctuations in biologi-
cal systems.” In: Proc. 19th Annu. Int. Conf. IEEE Eng.Med. Biol. Soc. ’Mag-
nificent Milestones Emerg. Oppor. Med. Eng. (Cat. No.97CH36136). Vol. 6.
IEEE, 1997, pp. 2692–2697. ISBN: 0-7803-4262-3. DOI: 10.1109/IEMBS.
1997.756890.

[191] Per Bak et al. “Unified Scaling Law for Earthquakes.” In: Phys. Rev. Lett.
88.17 (Apr. 2002), p. 4. ISSN: 10797114. DOI: 10.1103/PhysRevLett.88.
178501. arXiv: 0112342 [cond-mat].

[192] V Gontis and B Kaulakys. “Multiplicative point process as a model of
trading activity.” In:Phys. A Stat.Mech. its Appl. 343 (Nov. 2004), pp. 505–
514. ISSN: 03784371. DOI: 10.1016/j.physa.2004.05.080.

[193] Masanori Kobayashi and Toshimitsu Musha. “1/f Fluctuation of Heart-
beat Period.” In: IEEE Trans. Biomed. Eng. BME-29.6 (June 1982), pp. 456–
457. ISSN: 0018-9294. DOI: 10.1109/TBME.1982.324972.

[194] MatthewPitkin et al.Gravitational wave detection by Interferometry (Ground
and Space). July 2011. DOI: 10.12942/lrr-2011-5. arXiv: 1102.3355.

[195] Ella Podvalny et al. “A unifying principle underlying the extracellular
field potential spectral responses in the human cortex.” In: J. Neurophys-
iol. 114.1 (2015), pp. 505–519. ISSN: 0022-3077. DOI: 10.1152/jn.00943.
2014.

[196] RichardGao et al. “Inferring synaptic excitation/inhibition balance from
fieldpotentials.” In:Neuroimage 158.March (2017), pp. 70–78. ISSN: 10959572.
DOI: 10.1016/j.neuroimage.2017.06.078. arXiv: /dx.doi.org/10.
1101/081125 [http:].

[197] F. Lombardi et al. “Balance of excitation and inhibition determines 1/f
power spectrum in neuronal networks.” In: Chaos 27.4 (2017), pp. 1–18.
ISSN: 10541500. DOI: 10.1063/1.4979043. arXiv: 1708.09042.

[198] K. Diba et al. “Intrinsic Noise in CulturedHippocampalNeurons: Exper-
iment and Modeling.” In: J. Neurosci. 24.43 (Oct. 2004), pp. 9723–9733.
ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.1721-04.2004.

[199] B. Voytek et al. “Age-RelatedChanges in 1/fNeural Electrophysiological
Noise.” In: J. Neurosci. 35.38 (2015), pp. 13257–13265. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.2332-14.2015.

https://doi.org/10.1016/j.cpc.2017.10.018
https://doi.org/10.1016/j.jep.2010.11.024
https://arxiv.org/abs/0204033
https://arxiv.org/abs/0204033
https://doi.org/10.1016/0378-4363(76)90089-9
https://doi.org/10.1109/IEMBS.1997.756890
https://doi.org/10.1109/IEMBS.1997.756890
https://doi.org/10.1103/PhysRevLett.88.178501
https://doi.org/10.1103/PhysRevLett.88.178501
https://arxiv.org/abs/0112342
https://doi.org/10.1016/j.physa.2004.05.080
https://doi.org/10.1109/TBME.1982.324972
https://doi.org/10.12942/lrr-2011-5
https://arxiv.org/abs/1102.3355
https://doi.org/10.1152/jn.00943.2014
https://doi.org/10.1152/jn.00943.2014
https://doi.org/10.1016/j.neuroimage.2017.06.078
https://arxiv.org/abs//dx.doi.org/10.1101/081125
https://arxiv.org/abs//dx.doi.org/10.1101/081125
https://doi.org/10.1063/1.4979043
https://arxiv.org/abs/1708.09042
https://doi.org/10.1523/JNEUROSCI.1721-04.2004
https://doi.org/10.1523/JNEUROSCI.2332-14.2015


B I B L IOGRAPHY 111

[200] Joshua Milstein et al. “Neuronal shot noise and Brownian 1/f2 behavior
in the local field potential.” In: PLoS One 4.2 (2009), e4338. ISSN: 1932-
6203. DOI: 10.1371/journal.pone.0004338. arXiv: 0807.2893.

[201] Claude Bédard et al. “Modeling extracellular field potentials and the
frequency-filtering properties of extracellular space.” In: Biophys. J. 86.3
(2004), pp. 1829–1842. ISSN: 0006-3495. DOI: 10.1016/S0006-3495(04)
74250-2. arXiv: 0303057 [physics].

[202] SGabriel et al. “Thedielectric properties of biological tissues: \uppercase{II}.
Measurements in the frequency range 10\uppercase{H}z to 20\uppercase{GH}z.”
In: Phys. Med. Biol. 41.11 (1996), pp. 2251–2269.

[203] Gaute T. Einevoll et al. “Modelling and analysis of local field potentials
for studying the function of cortical circuits.” In:Nat. Rev. Neurosci. 14.11
(Nov. 2013), pp. 770–785. ISSN: 1471-003X. DOI: 10.1038/nrn3599.

[204] Henrik Linden et al. “Modeling the spatial reach of the LFP.” In:Neuron
72.5 (2011), pp. 859–872. ISSN: 08966273. DOI: 10.1016/j.neuron.2011.
11.006.

[205] Nikos K. Logothetis et al. “In Vivo Measurement of Cortical Impedance
Spectrum in Monkeys: Implications for Signal Propagation.” In: Neuron
55.5 (2007), pp. 809–823. ISSN: 08966273. DOI: 10.1016/j.neuron.2007.
07.027.

[206] Claude Bédard and Alain Destexhe. “Macroscopic models of local field
potentials and the apparent 1/f noise in brain activity.” In:Biophys. J. 96.7
(2009), pp. 2589–2603. ISSN: 00063495. DOI: 10.1016/j.bpj.2008.12.
3951. arXiv: arXiv:0808.3853v2.
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